Data
USPS

USPS

deactivated ARFF Publicly available Visibility: public Uploaded 03-04-2018 by Andreas Mueller
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
The dataset and this description is made available on http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html. The dataset refers to numeric data obtained from the scanning of handwritten digits from envelopes by the U.S. Postal Service. The original scanned digits are binary and of different sizes and orientations; the images here have been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990). There are 7291 training observations and 2007 test observations, distributed as follows: 0 1 2 3 4 5 6 7 8 9 Total Train 1194 1005 731 658 652 556 664 645 542 644 7291 Test 359 264 198 166 200 160 170 147 166 177 2007 or as proportions: 0 1 2 3 4 5 6 7 8 9 Train 0.16 0.14 0.1 0.09 0.09 0.08 0.09 0.09 0.07 0.09 Test 0.18 0.13 0.1 0.08 0.10 0.08 0.08 0.07 0.08 0.09 The test set is notoriously "difficult", and a 2.5% error rate is excellent. This is a notorious example of multiclass classifiction task where y∈0,1,…,9y∈0,1,…,9 and the inputs are real vectors.

257 features

int0 (target)numeric10 unique values
0 missing
double256numeric1834 unique values
0 missing
double1numeric1617 unique values
0 missing
double2numeric3010 unique values
0 missing
double3numeric4733 unique values
0 missing
double4numeric6345 unique values
0 missing
double5numeric8037 unique values
0 missing
double6numeric8948 unique values
0 missing
double7numeric9092 unique values
0 missing
double8numeric9136 unique values
0 missing
double9numeric9123 unique values
0 missing
double10numeric9122 unique values
0 missing
double11numeric9033 unique values
0 missing
double12numeric8260 unique values
0 missing
double13numeric6775 unique values
0 missing
double14numeric5243 unique values
0 missing
double15numeric3403 unique values
0 missing
double16numeric1931 unique values
0 missing
double17numeric2326 unique values
0 missing
double18numeric4144 unique values
0 missing
double19numeric5974 unique values
0 missing
double20numeric7236 unique values
0 missing
double21numeric8771 unique values
0 missing
double22numeric9198 unique values
0 missing
double23numeric9226 unique values
0 missing
double24numeric9219 unique values
0 missing
double25numeric9206 unique values
0 missing
double26numeric9206 unique values
0 missing
double27numeric9188 unique values
0 missing
double28numeric8795 unique values
0 missing
double29numeric7404 unique values
0 missing
double30numeric6143 unique values
0 missing
double31numeric4371 unique values
0 missing
double32numeric2528 unique values
0 missing
double33numeric3014 unique values
0 missing
double34numeric5064 unique values
0 missing
double35numeric6671 unique values
0 missing
double36numeric7797 unique values
0 missing
double37numeric9050 unique values
0 missing
double38numeric9259 unique values
0 missing
double39numeric9265 unique values
0 missing
double40numeric9260 unique values
0 missing
double41numeric9245 unique values
0 missing
double42numeric9247 unique values
0 missing
double43numeric9212 unique values
0 missing
double44numeric8954 unique values
0 missing
double45numeric7643 unique values
0 missing
double46numeric6617 unique values
0 missing
double47numeric5024 unique values
0 missing
double48numeric3091 unique values
0 missing
double49numeric3497 unique values
0 missing
double50numeric5578 unique values
0 missing
double51numeric7116 unique values
0 missing
double52numeric8108 unique values
0 missing
double53numeric9122 unique values
0 missing
double54numeric9266 unique values
0 missing
double55numeric9270 unique values
0 missing
double56numeric9257 unique values
0 missing
double57numeric9269 unique values
0 missing
double58numeric9261 unique values
0 missing
double59numeric9232 unique values
0 missing
double60numeric8944 unique values
0 missing
double61numeric7679 unique values
0 missing
double62numeric6758 unique values
0 missing
double63numeric5374 unique values
0 missing
double64numeric3422 unique values
0 missing
double65numeric3711 unique values
0 missing
double66numeric5672 unique values
0 missing
double67numeric7239 unique values
0 missing
double68numeric8140 unique values
0 missing
double69numeric9085 unique values
0 missing
double70numeric9254 unique values
0 missing
double71numeric9272 unique values
0 missing
double72numeric9257 unique values
0 missing
double73numeric9254 unique values
0 missing
double74numeric9259 unique values
0 missing
double75numeric9224 unique values
0 missing
double76numeric8831 unique values
0 missing
double77numeric7651 unique values
0 missing
double78numeric6791 unique values
0 missing
double79numeric5452 unique values
0 missing
double80numeric3535 unique values
0 missing
double81numeric3729 unique values
0 missing
double82numeric5580 unique values
0 missing
double83numeric7058 unique values
0 missing
double84numeric7891 unique values
0 missing
double85numeric8854 unique values
0 missing
double86numeric9149 unique values
0 missing
double87numeric9143 unique values
0 missing
double88numeric9182 unique values
0 missing
double89numeric9217 unique values
0 missing
double90numeric9247 unique values
0 missing
double91numeric9202 unique values
0 missing
double92numeric8784 unique values
0 missing
double93numeric7672 unique values
0 missing
double94numeric6814 unique values
0 missing
double95numeric5430 unique values
0 missing
double96numeric3572 unique values
0 missing
double97numeric3743 unique values
0 missing
double98numeric5482 unique values
0 missing
double99numeric6848 unique values
0 missing
double100numeric7644 unique values
0 missing
double101numeric8614 unique values
0 missing
double102numeric8912 unique values
0 missing
double103numeric8997 unique values
0 missing
double104numeric9075 unique values
0 missing
double105numeric9129 unique values
0 missing
double106numeric9212 unique values
0 missing
double107numeric9203 unique values
0 missing
double108numeric8899 unique values
0 missing
double109numeric7845 unique values
0 missing
double110numeric6906 unique values
0 missing
double111numeric5434 unique values
0 missing
double112numeric3647 unique values
0 missing
double113numeric3828 unique values
0 missing
double114numeric5400 unique values
0 missing
double115numeric6646 unique values
0 missing
double116numeric7518 unique values
0 missing
double117numeric8507 unique values
0 missing
double118numeric8840 unique values
0 missing
double119numeric8974 unique values
0 missing
double120numeric8982 unique values
0 missing
double121numeric8944 unique values
0 missing
double122numeric9093 unique values
0 missing
double123numeric9210 unique values
0 missing
double124numeric9026 unique values
0 missing
double125numeric8028 unique values
0 missing
double126numeric7034 unique values
0 missing
double127numeric5508 unique values
0 missing
double128numeric3770 unique values
0 missing
double129numeric3954 unique values
0 missing
double130numeric5348 unique values
0 missing
double131numeric6500 unique values
0 missing
double132numeric7384 unique values
0 missing
double133numeric8383 unique values
0 missing
double134numeric8806 unique values
0 missing
double135numeric8991 unique values
0 missing
double136numeric8854 unique values
0 missing
double137numeric8779 unique values
0 missing
double138numeric9059 unique values
0 missing
double139numeric9236 unique values
0 missing
double140numeric9076 unique values
0 missing
double141numeric8081 unique values
0 missing
double142numeric7053 unique values
0 missing
double143numeric5562 unique values
0 missing
double144numeric3939 unique values
0 missing
double145numeric4124 unique values
0 missing
double146numeric5381 unique values
0 missing
double147numeric6356 unique values
0 missing
double148numeric7171 unique values
0 missing
double149numeric8242 unique values
0 missing
double150numeric8853 unique values
0 missing
double151numeric8986 unique values
0 missing
double152numeric8813 unique values
0 missing
double153numeric8834 unique values
0 missing
double154numeric9123 unique values
0 missing
double155numeric9225 unique values
0 missing
double156numeric9080 unique values
0 missing
double157numeric8067 unique values
0 missing
double158numeric6953 unique values
0 missing
double159numeric5574 unique values
0 missing
double160numeric4149 unique values
0 missing
double161numeric4292 unique values
0 missing
double162numeric5444 unique values
0 missing
double163numeric6247 unique values
0 missing
double164numeric6957 unique values
0 missing
double165numeric8156 unique values
0 missing
double166numeric8934 unique values
0 missing
double167numeric9056 unique values
0 missing
double168numeric8934 unique values
0 missing
double169numeric9043 unique values
0 missing
double170numeric9222 unique values
0 missing
double171numeric9264 unique values
0 missing
double172numeric9063 unique values
0 missing
double173numeric7982 unique values
0 missing
double174numeric6771 unique values
0 missing
double175numeric5523 unique values
0 missing
double176numeric4269 unique values
0 missing
double177numeric4299 unique values
0 missing
double178numeric5422 unique values
0 missing
double179numeric6155 unique values
0 missing
double180numeric6907 unique values
0 missing
double181numeric8333 unique values
0 missing
double182numeric9127 unique values
0 missing
double183numeric9231 unique values
0 missing
double184numeric9220 unique values
0 missing
double185numeric9247 unique values
0 missing
double186numeric9267 unique values
0 missing
double187numeric9259 unique values
0 missing
double188numeric9068 unique values
0 missing
double189numeric7769 unique values
0 missing
double190numeric6484 unique values
0 missing
double191numeric5405 unique values
0 missing
double192numeric4228 unique values
0 missing
double193numeric4219 unique values
0 missing
double194numeric5314 unique values
0 missing
double195numeric6018 unique values
0 missing
double196numeric6789 unique values
0 missing
double197numeric8395 unique values
0 missing
double198numeric9156 unique values
0 missing
double199numeric9262 unique values
0 missing
double200numeric9274 unique values
0 missing
double201numeric9267 unique values
0 missing
double202numeric9278 unique values
0 missing
double203numeric9271 unique values
0 missing
double204numeric9000 unique values
0 missing
double205numeric7363 unique values
0 missing
double206numeric6140 unique values
0 missing
double207numeric5185 unique values
0 missing
double208numeric4015 unique values
0 missing
double209numeric3957 unique values
0 missing
double210numeric5129 unique values
0 missing
double211numeric5854 unique values
0 missing
double212numeric6667 unique values
0 missing
double213numeric8371 unique values
0 missing
double214numeric9123 unique values
0 missing
double215numeric9248 unique values
0 missing
double216numeric9254 unique values
0 missing
double217numeric9265 unique values
0 missing
double218numeric9270 unique values
0 missing
double219numeric9243 unique values
0 missing
double220numeric8825 unique values
0 missing
double221numeric6969 unique values
0 missing
double222numeric5836 unique values
0 missing
double223numeric4843 unique values
0 missing
double224numeric3554 unique values
0 missing
double225numeric3314 unique values
0 missing
double226numeric4718 unique values
0 missing
double227numeric5628 unique values
0 missing
double228numeric6485 unique values
0 missing
double229numeric8203 unique values
0 missing
double230numeric9005 unique values
0 missing
double231numeric9194 unique values
0 missing
double232numeric9221 unique values
0 missing
double233numeric9224 unique values
0 missing
double234numeric9218 unique values
0 missing
double235numeric9150 unique values
0 missing
double236numeric8459 unique values
0 missing
double237numeric6566 unique values
0 missing
double238numeric5446 unique values
0 missing
double239numeric4205 unique values
0 missing
double240numeric2791 unique values
0 missing
double241numeric2288 unique values
0 missing
double242numeric3799 unique values
0 missing
double243numeric5140 unique values
0 missing
double244numeric6107 unique values
0 missing
double245numeric7825 unique values
0 missing
double246numeric8841 unique values
0 missing
double247numeric9076 unique values
0 missing
double248numeric9139 unique values
0 missing
double249numeric9142 unique values
0 missing
double250numeric9107 unique values
0 missing
double251numeric8923 unique values
0 missing
double252numeric7824 unique values
0 missing
double253numeric5988 unique values
0 missing
double254numeric4571 unique values
0 missing
double255numeric3120 unique values
0 missing

62 properties

9298
Number of instances (rows) of the dataset.
257
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
257
Number of numeric attributes.
0
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.03
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.7
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.46
Mean skewness among attributes of the numeric type.
-0.47
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.5
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.8
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.57
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.56
Second quartile (Median) of standard deviation of attributes of the numeric type.
105.45
Maximum kurtosis among attributes of the numeric type.
-0.99
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
4.89
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.92
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
100
Percentage of numeric attributes.
-0.25
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.95
Minimum skewness among attributes of the numeric type.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
9.39
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.19
Third quartile of skewness among attributes of the numeric type.
3
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.23
First quartile of kurtosis among attributes of the numeric type.
0.62
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
-0.8
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.74
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.48
Mean of means among attributes of the numeric type.
0.28
First quartile of skewness among attributes of the numeric type.
-2.32
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.39
First quartile of standard deviation of attributes of the numeric type.

9 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task