Data
data-v3.en-es-lit.clean.anno_without_14top.uniform.arff

data-v3.en-es-lit.clean.anno_without_14top.uniform.arff

in_preparation ARFF Publicly available Visibility: public Uploaded 12-05-2017 by Mariano Rico
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_53 uploader_3128 user_3128
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
DBpedia mappings EN-ES-literals. Dataset used to train a predictive model. Uses the annotations provided manually (240) - 14 (used to validate the model). That is, 226 annotations.

23 features

Annotation (target)nominal2 unique values
0 missing
C1numeric146 unique values
0 missing
C2numeric162 unique values
0 missing
C3 (en)numeric111 unique values
0 missing
C3 (es)numeric97 unique values
0 missing
M1numeric90 unique values
0 missing
M2numeric45 unique values
0 missing
M3numeric114 unique values
0 missing
M4(en)numeric77 unique values
0 missing
M4(es)numeric67 unique values
0 missing
M5(en)numeric90 unique values
0 missing
M5(es)numeric90 unique values
0 missing
TB1numeric1 unique values
0 missing
TB2numeric1 unique values
0 missing
TB3numeric2 unique values
0 missing
TB4numeric2 unique values
0 missing
TB5numeric2 unique values
0 missing
TB6numeric2 unique values
0 missing
TB7numeric2 unique values
0 missing
TB8numeric2 unique values
0 missing
TB9numeric2 unique values
0 missing
TB10numeric2 unique values
0 missing
TB11numeric2 unique values
0 missing

62 properties

226
Number of instances (rows) of the dataset.
23
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
22
Number of numeric attributes.
1
Number of nominal attributes.
0.71
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.1
Number of attributes divided by the number of instances.
2
Average number of distinct values among the attributes of the nominal type.
11.59
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3.02
Mean skewness among attributes of the numeric type.
0.59
Second quartile (Median) of means among attributes of the numeric type.
80.53
Percentage of instances belonging to the most frequent class.
1697.05
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
182
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.61
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.9
Minimum kurtosis among attributes of the numeric type.
4.35
Percentage of binary attributes.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
110.46
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
2087.26
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
29.64
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
95.65
Percentage of numeric attributes.
903.45
Third quartile of means among attributes of the numeric type.
2
The maximum number of distinct values among attributes of the nominal type.
-2.65
Minimum skewness among attributes of the numeric type.
4.35
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
10.56
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
5.52
Third quartile of skewness among attributes of the numeric type.
7089.94
Maximum standard deviation of attributes of the numeric type.
19.47
Percentage of instances belonging to the least frequent class.
0.61
First quartile of kurtosis among attributes of the numeric type.
3827.45
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
44
Number of instances belonging to the least frequent class.
0.03
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
18.39
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
479.04
Mean of means among attributes of the numeric type.
-0.33
First quartile of skewness among attributes of the numeric type.
0.68
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.16
First quartile of standard deviation of attributes of the numeric type.

13 tasks

5 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Annotation
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Annotation
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: Holdout unlabeled - target_feature: Annotation
Define a new task