Data
thyroid-allbp

thyroid-allbp

active ARFF Publicly available Visibility: public Uploaded 26-07-2016 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Health Medicine Research study_144 study_50 study_52
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
UCI Thyroid allbp dataset.

27 features

Class (target)nominal5 unique values
0 missing
V1numeric94 unique values
0 missing
V2nominal2 unique values
0 missing
V3nominal2 unique values
0 missing
V4nominal2 unique values
0 missing
V5nominal2 unique values
0 missing
V6nominal2 unique values
0 missing
V7nominal2 unique values
0 missing
V8nominal2 unique values
0 missing
V9nominal2 unique values
0 missing
V10nominal2 unique values
0 missing
V11nominal2 unique values
0 missing
V12nominal2 unique values
0 missing
V13nominal2 unique values
0 missing
V14nominal2 unique values
0 missing
V15nominal2 unique values
0 missing
V16nominal2 unique values
0 missing
V17nominal2 unique values
0 missing
V18numeric264 unique values
0 missing
V19nominal2 unique values
0 missing
V20numeric65 unique values
0 missing
V21nominal2 unique values
0 missing
V22numeric218 unique values
0 missing
V23nominal2 unique values
0 missing
V24numeric139 unique values
0 missing
V25nominal2 unique values
0 missing
V26numeric210 unique values
0 missing

62 properties

2800
Number of instances (rows) of the dataset.
27
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
6
Number of numeric attributes.
21
Number of nominal attributes.
15.65
Maximum skewness among attributes of the numeric type.
0.18
Minimum standard deviation of attributes of the numeric type.
0.11
First quartile of entropy among attributes.
5.81
Third quartile of skewness among attributes of the numeric type.
34.21
Maximum standard deviation of attributes of the numeric type.
1.11
Percentage of instances belonging to the least frequent class.
7.02
First quartile of kurtosis among attributes of the numeric type.
31.88
Third quartile of standard deviation of attributes of the numeric type.
0.3
Average entropy of the attributes.
31
Number of instances belonging to the least frequent class.
1.77
First quartile of means among attributes of the numeric type.
0.65
Standard deviation of the number of distinct values among attributes of the nominal type.
67.68
Mean kurtosis among attributes of the numeric type.
20
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
46.57
Mean of means among attributes of the numeric type.
1.36
First quartile of skewness among attributes of the numeric type.
0.03
Average mutual information between the nominal attributes and the target attribute.
0.6
First quartile of standard deviation of attributes of the numeric type.
0.43
Average class difference between consecutive instances.
8.47
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0.26
Second quartile (Median) of entropy among attributes.
1.53
Entropy of the target attribute values.
2.14
Average number of distinct values among the attributes of the nominal type.
11.74
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.01
Number of attributes divided by the number of instances.
4.05
Mean skewness among attributes of the numeric type.
28.26
Second quartile (Median) of means among attributes of the numeric type.
48.56
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
58.29
Percentage of instances belonging to the most frequent class.
17.84
Mean standard deviation of attributes of the numeric type.
0.02
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1632
Number of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
1.73
Second quartile (Median) of skewness among attributes of the numeric type.
0.89
Maximum entropy among attributes.
4.62
Minimum kurtosis among attributes of the numeric type.
74.07
Percentage of binary attributes.
20.39
Second quartile (Median) of standard deviation of attributes of the numeric type.
317.57
Maximum kurtosis among attributes of the numeric type.
1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.48
Third quartile of entropy among attributes.
110.79
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
118.84
Third quartile of kurtosis among attributes of the numeric type.
0.12
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
22.22
Percentage of numeric attributes.
109.5
Third quartile of means among attributes of the numeric type.
5
The maximum number of distinct values among attributes of the nominal type.
1.32
Minimum skewness among attributes of the numeric type.
77.78
Percentage of nominal attributes.
0.04
Third quartile of mutual information between the nominal attributes and the target attribute.

14 tasks

66 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: area_under_roc_curve - target_feature: Class
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task