Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5084

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5084

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5084 (TID: 101058), and it has 594 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric40 unique values
0 missing
molecule_id (row identifier)nominal594 unique values
0 missing
Chi0_EA.dm.numeric521 unique values
0 missing
ATSC3mnumeric576 unique values
0 missing
ATS8mnumeric487 unique values
0 missing
Chi1_EA.dm.numeric528 unique values
0 missing
ATS3mnumeric432 unique values
0 missing
ATS7mnumeric494 unique values
0 missing
Eig12_AEA.dm.numeric398 unique values
0 missing
H.047numeric29 unique values
0 missing
Eig08_EA.ed.numeric474 unique values
0 missing
SM03_AEA.ri.numeric474 unique values
0 missing
ATSC8mnumeric583 unique values
0 missing
ATSC4pnumeric575 unique values
0 missing
ATS2enumeric430 unique values
0 missing
S3Knumeric530 unique values
0 missing
ATS2inumeric439 unique values
0 missing
IACnumeric519 unique values
0 missing
TIC0numeric519 unique values
0 missing
S1Knumeric476 unique values
0 missing
Eig05_EA.dm.numeric22 unique values
0 missing
Eta_betaSnumeric86 unique values
0 missing
Chi1_EA.bo.numeric532 unique values
0 missing
IDMnumeric472 unique values
0 missing
Eig08_AEA.bo.numeric393 unique values
0 missing
X2vnumeric564 unique values
0 missing
SpMin7_Bh.m.numeric343 unique values
0 missing
Eta_epsinumeric478 unique values
0 missing
MWnumeric532 unique values
0 missing
Eig15_AEA.ri.numeric461 unique values
0 missing
Eig15_EA.ri.numeric486 unique values
0 missing
ATS7pnumeric494 unique values
0 missing
CENTnumeric483 unique values
0 missing
Eig10_AEA.dm.numeric403 unique values
0 missing
Chi1_EA.ri.numeric566 unique values
0 missing
ATS5enumeric475 unique values
0 missing
ATS2mnumeric425 unique values
0 missing
SpMaxA_EA.ri.numeric107 unique values
0 missing
SpMin8_Bh.v.numeric335 unique values
0 missing
SpAD_AEA.bo.numeric551 unique values
0 missing
SpMax8_Bh.v.numeric355 unique values
0 missing
Eig15_EAnumeric411 unique values
0 missing
SM09_AEA.dm.numeric411 unique values
0 missing
HDcpxnumeric214 unique values
0 missing
SpMax8_Bh.p.numeric339 unique values
0 missing
Eig07_AEA.dm.numeric438 unique values
0 missing
ATSC2mnumeric554 unique values
0 missing
SpMax8_Bh.m.numeric365 unique values
0 missing
Eig11_AEA.dm.numeric388 unique values
0 missing
Eig13_AEA.dm.numeric428 unique values
0 missing
Dznumeric211 unique values
0 missing
RDSQnumeric548 unique values
0 missing
SpMin7_Bh.v.numeric358 unique values
0 missing
ATSC7mnumeric581 unique values
0 missing
SssOnumeric194 unique values
0 missing
Psi_i_0numeric551 unique values
0 missing
Eig08_AEA.ri.numeric426 unique values
0 missing
Eig10_EA.ed.numeric444 unique values
0 missing
SM05_AEA.ri.numeric444 unique values
0 missing
SpMin6_Bh.m.numeric333 unique values
0 missing
SM04_EAnumeric209 unique values
0 missing
ATSC4mnumeric581 unique values
0 missing
GGI6numeric388 unique values
0 missing
ON0Vnumeric454 unique values
0 missing
ATS5inumeric476 unique values
0 missing
Eig08_EAnumeric400 unique values
0 missing
SM02_AEA.dm.numeric400 unique values
0 missing
Eig09_AEA.dm.numeric433 unique values
0 missing
SpMax6_Bh.p.numeric362 unique values
0 missing
SpMax7_Bh.m.numeric370 unique values
0 missing
ATS8snumeric499 unique values
0 missing

62 properties

594
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
3.42
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.52
Third quartile of skewness among attributes of the numeric type.
861.53
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.14
First quartile of kurtosis among attributes of the numeric type.
4.39
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.39
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.27
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
37.14
Mean of means among attributes of the numeric type.
-1
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.31
First quartile of standard deviation of attributes of the numeric type.
0.64
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.15
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.12
Number of attributes divided by the number of instances.
-0.12
Mean skewness among attributes of the numeric type.
3.78
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
17.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.23
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.56
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.7
Second quartile (Median) of standard deviation of attributes of the numeric type.
14.83
Maximum kurtosis among attributes of the numeric type.
-0.33
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
1310.27
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.46
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
16.16
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.85
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task