Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2094120

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2094120

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2094120 (TID: 104702), and it has 670 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric360 unique values
0 missing
molecule_id (row identifier)nominal670 unique values
0 missing
FCFP4_1024b79numeric2 unique values
0 missing
FCFP4_1024b882numeric2 unique values
0 missing
FCFP4_1024b816numeric2 unique values
0 missing
FCFP4_1024b208numeric2 unique values
0 missing
FCFP4_1024b857numeric2 unique values
0 missing
FCFP4_1024b51numeric2 unique values
0 missing
FCFP4_1024b679numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b116numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b139numeric2 unique values
0 missing
FCFP4_1024b282numeric2 unique values
0 missing
FCFP4_1024b971numeric2 unique values
0 missing
FCFP4_1024b20numeric2 unique values
0 missing
FCFP4_1024b33numeric2 unique values
0 missing
FCFP4_1024b580numeric2 unique values
0 missing
FCFP4_1024b711numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b851numeric2 unique values
0 missing
FCFP4_1024b628numeric2 unique values
0 missing
FCFP4_1024b446numeric2 unique values
0 missing
FCFP4_1024b739numeric2 unique values
0 missing
FCFP4_1024b842numeric2 unique values
0 missing
FCFP4_1024b809numeric2 unique values
0 missing
FCFP4_1024b475numeric2 unique values
0 missing
FCFP4_1024b314numeric2 unique values
0 missing
FCFP4_1024b317numeric2 unique values
0 missing
FCFP4_1024b540numeric2 unique values
0 missing
FCFP4_1024b123numeric2 unique values
0 missing
FCFP4_1024b199numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b617numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b638numeric2 unique values
0 missing
FCFP4_1024b942numeric2 unique values
0 missing
FCFP4_1024b416numeric2 unique values
0 missing
FCFP4_1024b38numeric2 unique values
0 missing
FCFP4_1024b109numeric2 unique values
0 missing
FCFP4_1024b573numeric2 unique values
0 missing
FCFP4_1024b410numeric2 unique values
0 missing
FCFP4_1024b176numeric2 unique values
0 missing
FCFP4_1024b589numeric2 unique values
0 missing
FCFP4_1024b300numeric2 unique values
0 missing
FCFP4_1024b662numeric2 unique values
0 missing
FCFP4_1024b240numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing

62 properties

670
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
9.65
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.33
Third quartile of skewness among attributes of the numeric type.
1.25
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.59
First quartile of kurtosis among attributes of the numeric type.
0.37
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.05
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
12.52
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.3
Mean of means among attributes of the numeric type.
1.54
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.
-0.07
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
8.88
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.08
Number of attributes divided by the number of instances.
2.89
Mean skewness among attributes of the numeric type.
0.08
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.31
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.16
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.93
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.27
Second quartile (Median) of standard deviation of attributes of the numeric type.
91.41
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
7.59
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
17.92
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
0.2
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.25
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task