Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3192

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3192

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3192 (TID: 10869), and it has 601 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric391 unique values
0 missing
molecule_id (row identifier)nominal601 unique values
0 missing
FCFP4_1024b504numeric2 unique values
0 missing
FCFP4_1024b591numeric2 unique values
0 missing
FCFP4_1024b902numeric2 unique values
0 missing
FCFP4_1024b645numeric2 unique values
0 missing
FCFP4_1024b380numeric2 unique values
0 missing
FCFP4_1024b61numeric2 unique values
0 missing
FCFP4_1024b640numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b108numeric2 unique values
0 missing
FCFP4_1024b76numeric2 unique values
0 missing
FCFP4_1024b89numeric2 unique values
0 missing
FCFP4_1024b235numeric2 unique values
0 missing
FCFP4_1024b738numeric2 unique values
0 missing
FCFP4_1024b900numeric2 unique values
0 missing
FCFP4_1024b557numeric2 unique values
0 missing
FCFP4_1024b110numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b306numeric2 unique values
0 missing
FCFP4_1024b475numeric2 unique values
0 missing
FCFP4_1024b254numeric2 unique values
0 missing
FCFP4_1024b1017numeric2 unique values
0 missing
FCFP4_1024b478numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b450numeric2 unique values
0 missing
FCFP4_1024b58numeric2 unique values
0 missing
FCFP4_1024b660numeric2 unique values
0 missing
FCFP4_1024b284numeric2 unique values
0 missing
FCFP4_1024b817numeric2 unique values
0 missing
FCFP4_1024b274numeric2 unique values
0 missing
FCFP4_1024b724numeric2 unique values
0 missing
FCFP4_1024b11numeric2 unique values
0 missing
FCFP4_1024b194numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b25numeric2 unique values
0 missing
FCFP4_1024b567numeric2 unique values
0 missing
FCFP4_1024b731numeric2 unique values
0 missing
FCFP4_1024b386numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b746numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b325numeric2 unique values
0 missing
FCFP4_1024b453numeric2 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b395numeric2 unique values
0 missing
FCFP4_1024b838numeric2 unique values
0 missing
FCFP4_1024b813numeric2 unique values
0 missing
FCFP4_1024b256numeric2 unique values
0 missing
FCFP4_1024b458numeric2 unique values
0 missing
FCFP4_1024b275numeric2 unique values
0 missing
FCFP4_1024b701numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing

62 properties

601
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
5.53
Maximum skewness among attributes of the numeric type.
0.17
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.68
Third quartile of skewness among attributes of the numeric type.
1.05
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.61
First quartile of kurtosis among attributes of the numeric type.
0.39
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.04
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
10
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.27
Mean of means among attributes of the numeric type.
1.47
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.
0.36
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
7.81
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.09
Number of attributes divided by the number of instances.
2.86
Mean skewness among attributes of the numeric type.
0.08
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.31
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.13
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.96
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.27
Second quartile (Median) of standard deviation of attributes of the numeric type.
28.67
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
5.71
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
20.01
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
0.21
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.73
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task