Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293259

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293259

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1293259 (TID: 103692), and it has 134 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric38 unique values
0 missing
molecule_id (row identifier)nominal134 unique values
0 missing
Eta_C_Anumeric122 unique values
0 missing
AACnumeric108 unique values
0 missing
AECCnumeric129 unique values
0 missing
ALOGPnumeric129 unique values
0 missing
ALOGP2numeric133 unique values
0 missing
AMRnumeric133 unique values
0 missing
AMWnumeric127 unique values
0 missing
ARRnumeric83 unique values
0 missing
ATS1enumeric122 unique values
0 missing
ATS1inumeric117 unique values
0 missing
ATS1mnumeric121 unique values
0 missing
ATS1pnumeric125 unique values
0 missing
ATS1snumeric130 unique values
0 missing
ATS1vnumeric123 unique values
0 missing
ATS2enumeric124 unique values
0 missing
ATS2inumeric125 unique values
0 missing
ATS2mnumeric125 unique values
0 missing
ATS2pnumeric121 unique values
0 missing
ATS2snumeric123 unique values
0 missing
ATS2vnumeric124 unique values
0 missing
ATS3enumeric124 unique values
0 missing
ATS3inumeric128 unique values
0 missing
ATS3mnumeric119 unique values
0 missing
ATS3pnumeric121 unique values
0 missing
ATS3snumeric123 unique values
0 missing
ATS3vnumeric125 unique values
0 missing
ATS4enumeric124 unique values
0 missing
ATS4inumeric125 unique values
0 missing
ATS4mnumeric125 unique values
0 missing
ATS4pnumeric131 unique values
0 missing
ATS4snumeric128 unique values
0 missing
ATS4vnumeric129 unique values
0 missing
ATS5enumeric130 unique values
0 missing
ATS5inumeric128 unique values
0 missing
ATS5mnumeric127 unique values
0 missing
ATS5pnumeric132 unique values
0 missing
ATS5snumeric127 unique values
0 missing
ATS5vnumeric126 unique values
0 missing
ATS6enumeric129 unique values
0 missing
ATS6inumeric131 unique values
0 missing
ATS6mnumeric130 unique values
0 missing
ATS6pnumeric127 unique values
0 missing
ATS6snumeric128 unique values
0 missing
ATS6vnumeric128 unique values
0 missing
ATS7enumeric130 unique values
0 missing
ATS7inumeric130 unique values
0 missing
ATS7mnumeric127 unique values
0 missing
ATS7pnumeric128 unique values
0 missing
ATS7snumeric132 unique values
0 missing
ATS7vnumeric127 unique values
0 missing
ATS8enumeric131 unique values
0 missing
ATS8inumeric127 unique values
0 missing
ATS8mnumeric128 unique values
0 missing
ATS8pnumeric128 unique values
0 missing
ATS8snumeric129 unique values
0 missing
ATS8vnumeric126 unique values
0 missing
ATSC1enumeric92 unique values
0 missing
ATSC1inumeric125 unique values
0 missing
ATSC1mnumeric132 unique values
0 missing
ATSC1pnumeric131 unique values
0 missing
ATSC1snumeric134 unique values
0 missing
ATSC1vnumeric127 unique values
0 missing
ATSC2enumeric114 unique values
0 missing
ATSC2inumeric123 unique values
0 missing
ATSC2mnumeric132 unique values
0 missing
ATSC2pnumeric130 unique values
0 missing

62 properties

134
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.51
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.14
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.08
Mean skewness among attributes of the numeric type.
4.08
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.17
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.34
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.76
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.37
Second quartile (Median) of standard deviation of attributes of the numeric type.
45.74
Maximum kurtosis among attributes of the numeric type.
0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
104.96
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.09
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
4.84
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.34
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.6
Maximum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.1
Third quartile of skewness among attributes of the numeric type.
21.57
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.44
First quartile of kurtosis among attributes of the numeric type.
0.51
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.76
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.85
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.22
Mean of means among attributes of the numeric type.
-0.49
First quartile of skewness among attributes of the numeric type.
0.84
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task