Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5785

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5785

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5785 (TID: 101333), and it has 168 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric59 unique values
0 missing
molecule_id (row identifier)nominal168 unique values
0 missing
GGI8numeric133 unique values
0 missing
GGI4numeric149 unique values
0 missing
ATS8snumeric162 unique values
0 missing
PHInumeric159 unique values
0 missing
Eig07_AEA.dm.numeric153 unique values
0 missing
TIEnumeric166 unique values
0 missing
SpMax6_Bh.m.numeric144 unique values
0 missing
Eig02_EA.bo.numeric143 unique values
0 missing
SM12_AEA.ri.numeric143 unique values
0 missing
SpMax7_Bh.m.numeric145 unique values
0 missing
ATS7mnumeric156 unique values
0 missing
MWnumeric159 unique values
0 missing
Eig08_AEA.dm.numeric144 unique values
0 missing
X2vnumeric162 unique values
0 missing
Eig11_AEA.dm.numeric137 unique values
0 missing
ATS8mnumeric161 unique values
0 missing
ATS8inumeric158 unique values
0 missing
SpMaxA_EA.ed.numeric122 unique values
0 missing
Eig02_AEA.bo.numeric141 unique values
0 missing
XMODnumeric165 unique values
0 missing
GGI9numeric128 unique values
0 missing
SAaccnumeric141 unique values
0 missing
Eig09_AEA.dm.numeric150 unique values
0 missing
ATS8enumeric158 unique values
0 missing
ATS7vnumeric157 unique values
0 missing
P_VSA_s_3numeric161 unique values
0 missing
MAXDPnumeric164 unique values
0 missing
ATS7snumeric159 unique values
0 missing
ATSC2pnumeric161 unique values
0 missing
ATS6mnumeric160 unique values
0 missing
ATSC3snumeric166 unique values
0 missing
Eig10_AEA.dm.numeric140 unique values
0 missing
ATS1mnumeric148 unique values
0 missing
ATS2mnumeric150 unique values
0 missing
Eig07_AEA.ri.numeric144 unique values
0 missing
PW3numeric59 unique values
0 missing
Eta_Cnumeric166 unique values
0 missing
SaaNHnumeric79 unique values
0 missing
Chi1_EA.ri.numeric165 unique values
0 missing
SpMin8_Bh.p.numeric132 unique values
0 missing
Eta_alphanumeric153 unique values
0 missing
Eig15_AEA.dm.numeric144 unique values
0 missing
SpAD_EA.ri.numeric165 unique values
0 missing
S1Knumeric153 unique values
0 missing
SpMaxA_EA.bo.numeric95 unique values
0 missing
VvdwZAZnumeric161 unique values
0 missing
X0solnumeric136 unique values
0 missing
GGI7numeric147 unique values
0 missing
Dznumeric114 unique values
0 missing
Eig06_AEA.dm.numeric158 unique values
0 missing
SpMin8_Bh.v.numeric124 unique values
0 missing
Eig14_AEA.dm.numeric143 unique values
0 missing
Chi1_AEA.bo.numeric159 unique values
0 missing
Chi1_AEA.dm.numeric159 unique values
0 missing
Chi1_AEA.ed.numeric159 unique values
0 missing
Chi1_AEA.ri.numeric159 unique values
0 missing
Chi1_EAnumeric159 unique values
0 missing
SpMax8_Bh.m.numeric127 unique values
0 missing
ATS3mnumeric150 unique values
0 missing
CIDnumeric137 unique values
0 missing
BBInumeric45 unique values
0 missing
MPC02numeric45 unique values
0 missing
MWC02numeric66 unique values
0 missing
SM02_EAnumeric45 unique values
0 missing
SRW04numeric86 unique values
0 missing
ZM1numeric66 unique values
0 missing
Eig12_AEA.dm.numeric136 unique values
0 missing

62 properties

168
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.41
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.36
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.04
Mean skewness among attributes of the numeric type.
4.18
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.53
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.34
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.98
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.48
Maximum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
395.51
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.69
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
15.56
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.15
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.69
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.6
Third quartile of skewness among attributes of the numeric type.
91.03
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.09
First quartile of kurtosis among attributes of the numeric type.
3.6
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.78
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.95
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
24.56
Mean of means among attributes of the numeric type.
-0.55
First quartile of skewness among attributes of the numeric type.
0.38
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task