Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2000

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2000

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2000 (TID: 23), and it has 198 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric157 unique values
0 missing
molecule_id (row identifier)nominal198 unique values
0 missing
CATS2D_09_DLnumeric32 unique values
0 missing
Eig08_AEA.bo.numeric149 unique values
0 missing
Eig07_EA.bo.numeric148 unique values
0 missing
Eta_FLnumeric172 unique values
0 missing
IC4numeric169 unique values
0 missing
Eig08_EA.bo.numeric150 unique values
0 missing
Eig12_EA.bo.numeric151 unique values
0 missing
Eig13_EA.bo.numeric152 unique values
0 missing
Eig07_AEA.bo.numeric149 unique values
0 missing
Eig08_AEA.ri.numeric158 unique values
0 missing
Eta_betanumeric116 unique values
0 missing
Eig08_EAnumeric154 unique values
0 missing
SM02_AEA.dm.numeric154 unique values
0 missing
Eig13_EA.ri.numeric155 unique values
0 missing
IC5numeric168 unique values
0 missing
Eig13_AEA.ri.numeric153 unique values
0 missing
Eig13_AEA.bo.numeric143 unique values
0 missing
GGI7numeric160 unique values
0 missing
Eta_Fnumeric197 unique values
0 missing
GGI4numeric142 unique values
0 missing
SpMaxA_AEA.dm.numeric86 unique values
0 missing
SpMax7_Bh.s.numeric106 unique values
0 missing
Eig09_AEA.bo.numeric152 unique values
0 missing
Eig10_EAnumeric141 unique values
0 missing
SM04_AEA.dm.numeric141 unique values
0 missing
Eig08_EA.ri.numeric155 unique values
0 missing
Eig11_AEA.ed.numeric134 unique values
0 missing
Eig11_EA.ed.numeric139 unique values
0 missing
SM06_AEA.ri.numeric139 unique values
0 missing
CATS2D_07_DLnumeric28 unique values
0 missing
Eig12_EA.ed.numeric144 unique values
0 missing
SM07_AEA.ri.numeric144 unique values
0 missing
Eig10_AEA.ed.numeric141 unique values
0 missing
Eig08_AEA.dm.numeric162 unique values
0 missing
D.Dtr06numeric168 unique values
0 missing
nCsp2numeric32 unique values
0 missing
SpMax8_Bh.s.numeric133 unique values
0 missing
nCarnumeric21 unique values
0 missing
GGI10numeric131 unique values
0 missing
X5numeric164 unique values
0 missing
DLS_consnumeric49 unique values
0 missing
Eig07_EAnumeric148 unique values
0 missing
SM15_AEA.bo.numeric148 unique values
0 missing
Eig05_AEA.bo.numeric157 unique values
0 missing
Eig10_AEA.ri.numeric153 unique values
0 missing
nABnumeric18 unique values
0 missing
ZM2Kupnumeric176 unique values
0 missing
ATS1snumeric160 unique values
0 missing
SpMax3_Bh.v.numeric133 unique values
0 missing
Eig10_EA.ed.numeric155 unique values
0 missing
SM05_AEA.ri.numeric155 unique values
0 missing
P_VSA_p_2numeric117 unique values
0 missing
Eig06_EA.bo.numeric144 unique values
0 missing
SpMin3_Bh.e.numeric129 unique values
0 missing
SpMin3_Bh.i.numeric133 unique values
0 missing
Eig09_AEA.ed.numeric140 unique values
0 missing
SM03_EA.ri.numeric139 unique values
0 missing
Eig10_EA.ri.numeric157 unique values
0 missing
piPC01numeric91 unique values
0 missing
SCBOnumeric91 unique values
0 missing
SpAD_EA.bo.numeric179 unique values
0 missing
SM03_AEA.bo.numeric141 unique values
0 missing
Eig08_EA.ed.numeric162 unique values
0 missing
SM03_AEA.ri.numeric162 unique values
0 missing
piPC02numeric135 unique values
0 missing
SM02_EA.bo.numeric135 unique values
0 missing
Eig12_EAnumeric133 unique values
0 missing

62 properties

198
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.35
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.84
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.28
Mean skewness among attributes of the numeric type.
3.51
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
19.25
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.04
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.24
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.01
Maximum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
655.5
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.21
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
5.5
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.66
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.71
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.92
Third quartile of skewness among attributes of the numeric type.
423.17
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.03
First quartile of kurtosis among attributes of the numeric type.
2.76
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.88
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.37
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
27.08
Mean of means among attributes of the numeric type.
-0.66
First quartile of skewness among attributes of the numeric type.
0.05
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.61
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task