Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5480

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5480

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5480 (TID: 101208), and it has 138 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric81 unique values
0 missing
molecule_id (row identifier)nominal138 unique values
0 missing
P_VSA_LogP_2numeric26 unique values
0 missing
GATS1vnumeric85 unique values
0 missing
CATS2D_02_DDnumeric2 unique values
0 missing
nCONNnumeric2 unique values
0 missing
nN.CO.2numeric3 unique values
0 missing
GATS1pnumeric97 unique values
0 missing
C.041numeric2 unique values
0 missing
CIC4numeric70 unique values
0 missing
SIC4numeric55 unique values
0 missing
SpDiam_AEA.ed.numeric53 unique values
0 missing
NssNHnumeric4 unique values
0 missing
SssNHnumeric60 unique values
0 missing
BIC4numeric53 unique values
0 missing
CIC5numeric70 unique values
0 missing
SIC5numeric54 unique values
0 missing
N.072numeric4 unique values
0 missing
BIC5numeric54 unique values
0 missing
NdSnumeric2 unique values
0 missing
S.108numeric2 unique values
0 missing
SdSnumeric22 unique values
0 missing
P_VSA_LogP_8numeric6 unique values
0 missing
CATS2D_09_DLnumeric6 unique values
0 missing
Eig03_AEA.ed.numeric58 unique values
0 missing
GATS1mnumeric90 unique values
0 missing
CATS2D_08_DLnumeric5 unique values
0 missing
JGI4numeric25 unique values
0 missing
MATS2vnumeric102 unique values
0 missing
D.Dtr05numeric79 unique values
0 missing
GATS3vnumeric112 unique values
0 missing
MATS3vnumeric110 unique values
0 missing
Eig01_EA.ed.numeric36 unique values
0 missing
SM10_AEA.dm.numeric36 unique values
0 missing
SpMax_EA.ed.numeric36 unique values
0 missing
SpMax2_Bh.s.numeric52 unique values
0 missing
SpMax3_Bh.m.numeric103 unique values
0 missing
Eig03_EAnumeric77 unique values
0 missing
SM11_AEA.bo.numeric77 unique values
0 missing
GATS7snumeric129 unique values
0 missing
Eig01_AEA.ed.numeric27 unique values
0 missing
SpDiam_EA.ed.numeric44 unique values
0 missing
SpMax_AEA.ed.numeric27 unique values
0 missing
Eig03_AEA.bo.numeric76 unique values
0 missing
Eig03_AEA.ri.numeric120 unique values
0 missing
Eig01_EAnumeric39 unique values
0 missing
SM09_AEA.bo.numeric39 unique values
0 missing
SpDiam_EAnumeric39 unique values
0 missing
SpMax_EAnumeric39 unique values
0 missing
GATS5snumeric128 unique values
0 missing
MATS3pnumeric121 unique values
0 missing
Eig01_AEA.ri.numeric55 unique values
0 missing
Eig01_EA.ri.numeric61 unique values
0 missing
SpMax_AEA.ri.numeric55 unique values
0 missing
SpMax_EA.ri.numeric61 unique values
0 missing
SpDiam_EA.ri.numeric69 unique values
0 missing
nDBnumeric6 unique values
0 missing
MATS3mnumeric107 unique values
0 missing
SssCH2numeric73 unique values
0 missing
Eig01_AEA.bo.numeric47 unique values
0 missing
SpMax_AEA.bo.numeric47 unique values
0 missing
GATS3enumeric119 unique values
0 missing
MATS5enumeric107 unique values
0 missing
SM03_EA.dm.numeric13 unique values
0 missing

62 properties

138
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.46
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.79
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.39
Mean skewness among attributes of the numeric type.
1.36
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.74
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.23
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.53
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.19
Second quartile (Median) of standard deviation of attributes of the numeric type.
35.36
Maximum kurtosis among attributes of the numeric type.
-0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
97.56
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.22
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
4.64
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.75
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.24
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.7
Third quartile of skewness among attributes of the numeric type.
48.54
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.12
First quartile of kurtosis among attributes of the numeric type.
0.82
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.69
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.04
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.76
Mean of means among attributes of the numeric type.
-0.11
First quartile of skewness among attributes of the numeric type.
0.6
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.12
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task