Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741171

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741171

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1741171 (TID: 103967), and it has 1875 rows and 71 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

73 features

pXC50 (target)numeric1029 unique values
0 missing
molecule_id (row identifier)nominal1875 unique values
0 missing
CATS2D_04_DLnumeric15 unique values
0 missing
CATS2D_06_DDnumeric6 unique values
0 missing
CATS2D_06_DAnumeric9 unique values
0 missing
NaaNHnumeric3 unique values
0 missing
NaasCnumeric13 unique values
0 missing
CATS2D_03_DDnumeric5 unique values
0 missing
CATS2D_06_DLnumeric13 unique values
0 missing
CATS2D_01_DAnumeric3 unique values
0 missing
N.073numeric4 unique values
0 missing
nPyrazolesnumeric3 unique values
0 missing
SsOHnumeric490 unique values
0 missing
C.029numeric4 unique values
0 missing
StsCnumeric249 unique values
0 missing
nArOHnumeric6 unique values
0 missing
C.025numeric10 unique values
0 missing
Eig03_EA.bo.numeric895 unique values
0 missing
SM13_AEA.ri.numeric895 unique values
0 missing
StNnumeric286 unique values
0 missing
Eig03_EA.dm.numeric240 unique values
0 missing
nRCNnumeric5 unique values
0 missing
CATS2D_02_DLnumeric10 unique values
0 missing
P_VSA_MR_5numeric1190 unique values
0 missing
CATS2D_07_DAnumeric8 unique values
0 missing
SAdonnumeric88 unique values
0 missing
SM08_EA.dm.numeric725 unique values
0 missing
MATS1inumeric557 unique values
0 missing
O.057numeric6 unique values
0 missing
NtNnumeric5 unique values
0 missing
SM06_EA.dm.numeric767 unique values
0 missing
CATS2D_05_DLnumeric11 unique values
0 missing
nCspnumeric5 unique values
0 missing
nTBnumeric5 unique values
0 missing
NtsCnumeric5 unique values
0 missing
SM04_EA.dm.numeric815 unique values
0 missing
SpDiam_EA.dm.numeric316 unique values
0 missing
H.051numeric11 unique values
0 missing
H.050numeric8 unique values
0 missing
nHDonnumeric8 unique values
0 missing
SaaNHnumeric249 unique values
0 missing
SpDiam_EA.ri.numeric716 unique values
0 missing
GATS4snumeric822 unique values
0 missing
P_VSA_i_4numeric463 unique values
0 missing
SpMAD_EA.dm.numeric635 unique values
0 missing
SpMax3_Bh.e.numeric606 unique values
0 missing
Eta_sh_ynumeric299 unique values
0 missing
MATS5mnumeric533 unique values
0 missing
Eig01_EA.ri.numeric711 unique values
0 missing
SpMax_EA.ri.numeric711 unique values
0 missing
NsOHnumeric7 unique values
0 missing
CATS2D_08_DAnumeric8 unique values
0 missing
Hynumeric585 unique values
0 missing
SpMaxA_EA.dm.numeric187 unique values
0 missing
Eig02_EA.ri.numeric703 unique values
0 missing
ATSC7mnumeric1817 unique values
0 missing
C.020numeric3 unique values
0 missing
SM10_EA.dm.numeric633 unique values
0 missing
N.066numeric2 unique values
0 missing
nRNH2numeric2 unique values
0 missing
GGI6numeric775 unique values
0 missing
Eig01_AEA.ri.numeric701 unique values
0 missing
SpMax_AEA.ri.numeric701 unique values
0 missing
LLS_01numeric7 unique values
0 missing
SpDiam_EA.ed.numeric1314 unique values
0 missing
SpMAD_EA.ed.numeric886 unique values
0 missing
Eig02_EA.dm.numeric288 unique values
0 missing
GNarnumeric300 unique values
0 missing
SM12_EA.dm.numeric586 unique values
0 missing
SM14_EA.dm.numeric551 unique values
0 missing
C.017numeric4 unique values
0 missing
nR.Ctnumeric4 unique values
0 missing
P_VSA_LogP_4numeric716 unique values
0 missing

62 properties

1875
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.04
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.88
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.29
Mean skewness among attributes of the numeric type.
1.28
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.16
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.01
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.81
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.62
Second quartile (Median) of standard deviation of attributes of the numeric type.
37.22
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
78.61
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.14
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.63
Percentage of numeric attributes.
4.01
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.16
Minimum skewness among attributes of the numeric type.
1.37
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.69
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.37
Third quartile of skewness among attributes of the numeric type.
39.41
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.63
First quartile of kurtosis among attributes of the numeric type.
2
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.24
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.03
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.11
Mean of means among attributes of the numeric type.
0.32
First quartile of skewness among attributes of the numeric type.
0.3
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.32
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task