Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2857

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2857

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2857 (TID: 12464), and it has 473 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric265 unique values
0 missing
molecule_id (row identifier)nominal473 unique values
0 missing
P_VSA_e_2numeric426 unique values
0 missing
P_VSA_p_3numeric426 unique values
0 missing
P_VSA_v_3numeric426 unique values
0 missing
Eta_betaPnumeric52 unique values
0 missing
SpMax3_Bh.v.numeric256 unique values
0 missing
Eig02_AEA.ed.numeric240 unique values
0 missing
TRSnumeric32 unique values
0 missing
nBMnumeric34 unique values
0 missing
Ucnumeric34 unique values
0 missing
P_VSA_s_3numeric350 unique values
0 missing
piPC08numeric349 unique values
0 missing
P_VSA_i_2numeric424 unique values
0 missing
MPC10numeric190 unique values
0 missing
Eig02_EA.ri.numeric273 unique values
0 missing
Wapnumeric368 unique values
0 missing
nCsp2numeric31 unique values
0 missing
Eig02_EA.ed.numeric298 unique values
0 missing
SM11_AEA.dm.numeric298 unique values
0 missing
MPC05numeric139 unique values
0 missing
Uinumeric33 unique values
0 missing
piPC03numeric274 unique values
0 missing
piPC09numeric355 unique values
0 missing
SM04_EA.bo.numeric332 unique values
0 missing
SpMax3_Bh.p.numeric257 unique values
0 missing
X5solnumeric374 unique values
0 missing
CATS2D_02_LLnumeric34 unique values
0 missing
Eig02_AEA.ri.numeric285 unique values
0 missing
piPC10numeric370 unique values
0 missing
MPC06numeric148 unique values
0 missing
Eig08_EA.ri.numeric351 unique values
0 missing
X5numeric372 unique values
0 missing
Eig14_AEA.bo.numeric279 unique values
0 missing
Eta_FLnumeric413 unique values
0 missing
MPC08numeric179 unique values
0 missing
SM06_EA.bo.numeric324 unique values
0 missing
Eig10_EA.bo.numeric297 unique values
0 missing
Eig07_EA.bo.numeric335 unique values
0 missing
Eig09_EA.bo.numeric288 unique values
0 missing
ATSC6snumeric453 unique values
0 missing
SpMin5_Bh.s.numeric258 unique values
0 missing
MPC07numeric167 unique values
0 missing
piPC01numeric102 unique values
0 missing
SCBOnumeric102 unique values
0 missing
piPC05numeric328 unique values
0 missing
CATS2D_08_ALnumeric25 unique values
0 missing
Eig08_AEA.ri.numeric337 unique values
0 missing
X4solnumeric371 unique values
0 missing
Eig08_EAnumeric309 unique values
0 missing
SM02_AEA.dm.numeric309 unique values
0 missing
SpMin6_Bh.s.numeric262 unique values
0 missing
JGI3numeric49 unique values
0 missing
Rperimnumeric30 unique values
0 missing
SpMin2_Bh.i.numeric194 unique values
0 missing
Eig05_EA.bo.numeric304 unique values
0 missing
SM15_AEA.ri.numeric304 unique values
0 missing
piPC04numeric314 unique values
0 missing
Eig14_EA.ed.numeric300 unique values
0 missing
SM09_AEA.ri.numeric300 unique values
0 missing
MPC09numeric194 unique values
0 missing
Eig06_EA.bo.numeric309 unique values
0 missing
Eta_betanumeric178 unique values
0 missing
X4numeric372 unique values
0 missing
Eig14_EA.bo.numeric315 unique values
0 missing
IC1numeric352 unique values
0 missing
SM06_AEA.bo.numeric327 unique values
0 missing
Eig13_AEA.bo.numeric279 unique values
0 missing
Eig15_AEA.bo.numeric258 unique values
0 missing
piPC02numeric186 unique values
0 missing
SM02_EA.bo.numeric186 unique values
0 missing

62 properties

473
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.15
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.46
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.18
Mean skewness among attributes of the numeric type.
4.66
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1068.22
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.05
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.79
Second quartile (Median) of standard deviation of attributes of the numeric type.
79.12
Maximum kurtosis among attributes of the numeric type.
0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
29373.12
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.11
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
9.64
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.68
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
8.23
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.92
Third quartile of skewness among attributes of the numeric type.
74289.83
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.41
First quartile of kurtosis among attributes of the numeric type.
3.89
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.58
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.22
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
437.25
Mean of means among attributes of the numeric type.
-0.57
First quartile of skewness among attributes of the numeric type.
-0.25
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.41
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task