Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4454

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4454

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4454 (TID: 100127), and it has 101 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric55 unique values
0 missing
molecule_id (row identifier)nominal101 unique values
0 missing
CATS2D_09_DAnumeric5 unique values
0 missing
SpMax7_Bh.m.numeric94 unique values
0 missing
AACnumeric89 unique values
0 missing
AECCnumeric96 unique values
0 missing
ALOGPnumeric100 unique values
0 missing
ALOGP2numeric100 unique values
0 missing
AMRnumeric100 unique values
0 missing
AMWnumeric93 unique values
0 missing
ARRnumeric74 unique values
0 missing
ATS1enumeric92 unique values
0 missing
ATS1inumeric93 unique values
0 missing
ATS1mnumeric95 unique values
0 missing
ATS1pnumeric93 unique values
0 missing
ATS1snumeric92 unique values
0 missing
ATS1vnumeric92 unique values
0 missing
ATS2enumeric91 unique values
0 missing
ATS2inumeric96 unique values
0 missing
ATS2mnumeric95 unique values
0 missing
ATS2pnumeric96 unique values
0 missing
ATS2snumeric99 unique values
0 missing
ATS2vnumeric95 unique values
0 missing
ATS3enumeric97 unique values
0 missing
ATS3inumeric96 unique values
0 missing
ATS3mnumeric94 unique values
0 missing
ATS3pnumeric94 unique values
0 missing
ATS3snumeric92 unique values
0 missing
ATS3vnumeric96 unique values
0 missing
ATS4enumeric96 unique values
0 missing
ATS4inumeric99 unique values
0 missing
ATS4mnumeric91 unique values
0 missing
ATS4pnumeric94 unique values
0 missing
ATS4snumeric99 unique values
0 missing
ATS4vnumeric96 unique values
0 missing
ATS5enumeric97 unique values
0 missing
ATS5inumeric98 unique values
0 missing
ATS5mnumeric97 unique values
0 missing
ATS5pnumeric98 unique values
0 missing
ATS5snumeric97 unique values
0 missing
ATS5vnumeric97 unique values
0 missing
ATS6enumeric94 unique values
0 missing
ATS6inumeric96 unique values
0 missing
ATS6mnumeric94 unique values
0 missing
ATS6pnumeric97 unique values
0 missing
ATS6snumeric95 unique values
0 missing
ATS6vnumeric96 unique values
0 missing
ATS7enumeric96 unique values
0 missing
ATS7inumeric97 unique values
0 missing
ATS7mnumeric98 unique values
0 missing
ATS7pnumeric97 unique values
0 missing
ATS7snumeric97 unique values
0 missing
ATS7vnumeric97 unique values
0 missing
ATS8enumeric97 unique values
0 missing
ATS8inumeric98 unique values
0 missing
ATS8mnumeric98 unique values
0 missing
ATS8pnumeric97 unique values
0 missing
ATS8snumeric98 unique values
0 missing
ATS8vnumeric96 unique values
0 missing
ATSC1enumeric79 unique values
0 missing
ATSC1inumeric93 unique values
0 missing
ATSC1mnumeric98 unique values
0 missing
ATSC1pnumeric98 unique values
0 missing
ATSC1snumeric100 unique values
0 missing
ATSC1vnumeric99 unique values
0 missing
ATSC2enumeric90 unique values
0 missing
ATSC2inumeric95 unique values
0 missing

62 properties

101
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.66
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.21
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.05
Mean skewness among attributes of the numeric type.
4.22
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.14
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.01
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.94
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
13.92
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
124.69
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.79
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
5.19
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.67
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.53
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.26
Third quartile of skewness among attributes of the numeric type.
25.61
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.74
First quartile of kurtosis among attributes of the numeric type.
0.43
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
4.01
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.68
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.64
Mean of means among attributes of the numeric type.
-0.25
First quartile of skewness among attributes of the numeric type.
-0.32
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task