Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3886

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3886

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3886 (TID: 20007), and it has 694 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric62 unique values
0 missing
molecule_id (row identifier)nominal694 unique values
0 missing
SpMin6_Bh.p.numeric396 unique values
0 missing
Eig06_EA.bo.numeric489 unique values
0 missing
ATS7pnumeric563 unique values
0 missing
ATS6pnumeric537 unique values
0 missing
ATS3enumeric488 unique values
0 missing
ATSC3mnumeric670 unique values
0 missing
ATS7vnumeric552 unique values
0 missing
ZM2Pernumeric673 unique values
0 missing
Eig06_AEA.bo.numeric456 unique values
0 missing
ATSC7pnumeric665 unique values
0 missing
ATS7inumeric567 unique values
0 missing
ZM2Kupnumeric668 unique values
0 missing
ZM2MulPernumeric675 unique values
0 missing
ATS8enumeric576 unique values
0 missing
ATS3inumeric500 unique values
0 missing
ZM2Vnumeric308 unique values
0 missing
ATS8pnumeric576 unique values
0 missing
Eig06_AEA.ri.numeric506 unique values
0 missing
ATSC6vnumeric668 unique values
0 missing
CATS2D_03_ALnumeric20 unique values
0 missing
Eig06_EAnumeric449 unique values
0 missing
SM14_AEA.bo.numeric449 unique values
0 missing
ATS7enumeric552 unique values
0 missing
ATS2enumeric484 unique values
0 missing
ATS8inumeric586 unique values
0 missing
SpMin6_Bh.s.numeric379 unique values
0 missing
SM08_AEA.bo.numeric473 unique values
0 missing
ATS5pnumeric531 unique values
0 missing
Eig06_EA.ri.numeric518 unique values
0 missing
ATSC6pnumeric663 unique values
0 missing
piPC02numeric241 unique values
0 missing
SM02_EA.bo.numeric241 unique values
0 missing
SM04_EA.bo.numeric455 unique values
0 missing
SM06_AEA.bo.numeric460 unique values
0 missing
SpMin3_Bh.p.numeric325 unique values
0 missing
ATSC7vnumeric666 unique values
0 missing
SaasNnumeric148 unique values
0 missing
ATS5enumeric530 unique values
0 missing
Eta_betaPnumeric49 unique values
0 missing
MWC04numeric328 unique values
0 missing
SM07_AEA.bo.numeric471 unique values
0 missing
SpMin6_Bh.e.numeric373 unique values
0 missing
SpMin6_Bh.i.numeric398 unique values
0 missing
GGI6numeric429 unique values
0 missing
MWC05numeric448 unique values
0 missing
ATS6inumeric551 unique values
0 missing
ATS8vnumeric560 unique values
0 missing
ATS6enumeric548 unique values
0 missing
ATSC8pnumeric666 unique values
0 missing
X1MulPernumeric636 unique values
0 missing
SpMin6_Bh.v.numeric374 unique values
0 missing
Eta_betaP_Anumeric251 unique values
0 missing
ATS2inumeric489 unique values
0 missing
SM04_AEA.bo.numeric448 unique values
0 missing
X5solnumeric606 unique values
0 missing
MATS1mnumeric158 unique values
0 missing
SpAD_EA.ed.numeric635 unique values
0 missing
SpMax2_Bh.m.numeric310 unique values
0 missing
Eig12_AEA.ed.numeric435 unique values
0 missing
Eig06_AEA.ed.numeric502 unique values
0 missing
ON0Vnumeric509 unique values
0 missing
SRW09numeric96 unique values
0 missing
SM05_AEA.bo.numeric439 unique values
0 missing
ATSC3inumeric554 unique values
0 missing
Chi0_EA.dm.numeric594 unique values
0 missing
X4solnumeric605 unique values
0 missing
X1Pernumeric641 unique values
0 missing
SpMin3_Bh.v.numeric325 unique values
0 missing
SM02_AEA.ed.numeric171 unique values
0 missing

62 properties

694
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.1
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.12
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.19
Mean skewness among attributes of the numeric type.
4.66
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
8
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.33
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.69
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
11.3
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
666.98
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.2
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
8.14
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.97
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.03
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.42
Third quartile of skewness among attributes of the numeric type.
152.9
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.27
First quartile of kurtosis among attributes of the numeric type.
2.07
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.01
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.44
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
35.47
Mean of means among attributes of the numeric type.
-0.77
First quartile of skewness among attributes of the numeric type.
0.66
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task