Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3817

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3817

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3817 (TID: 10032), and it has 94 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric67 unique values
0 missing
molecule_id (row identifier)nominal94 unique values
0 missing
C.006numeric9 unique values
0 missing
N.070numeric2 unique values
0 missing
SpMax7_Bh.i.numeric78 unique values
0 missing
IDDEnumeric71 unique values
0 missing
SpMin6_Bh.v.numeric74 unique values
0 missing
SpMin7_Bh.s.numeric62 unique values
0 missing
Eta_sh_ynumeric70 unique values
0 missing
H.047numeric31 unique values
0 missing
MAXDNnumeric90 unique values
0 missing
N.071numeric2 unique values
0 missing
nArNR2numeric2 unique values
0 missing
NddssSnumeric3 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
P_VSA_s_1numeric4 unique values
0 missing
PW4numeric44 unique values
0 missing
S.110numeric3 unique values
0 missing
SddssSnumeric20 unique values
0 missing
SpDiam_AEA.ed.numeric51 unique values
0 missing
SpMin6_Bh.p.numeric75 unique values
0 missing
N.068numeric3 unique values
0 missing
nRNR2numeric3 unique values
0 missing
P_VSA_e_1numeric34 unique values
0 missing
P_VSA_LogP_7numeric41 unique values
0 missing
P_VSA_m_1numeric34 unique values
0 missing
P_VSA_MR_1numeric44 unique values
0 missing
P_VSA_p_1numeric43 unique values
0 missing
P_VSA_s_2numeric38 unique values
0 missing
P_VSA_v_1numeric34 unique values
0 missing
SpMin7_Bh.m.numeric63 unique values
0 missing
MATS2snumeric84 unique values
0 missing
Eig01_AEA.bo.numeric46 unique values
0 missing
Eig01_AEA.ed.numeric42 unique values
0 missing
Eig01_EA.ed.numeric51 unique values
0 missing
nRSRnumeric3 unique values
0 missing
SM10_AEA.dm.numeric51 unique values
0 missing
SpDiam_AEA.bo.numeric61 unique values
0 missing
SpMax_AEA.bo.numeric46 unique values
0 missing
SpMax_AEA.ed.numeric42 unique values
0 missing
SpMax_EA.ed.numeric51 unique values
0 missing
SpMin6_Bh.s.numeric67 unique values
0 missing
SsssNnumeric56 unique values
0 missing
X2Avnumeric51 unique values
0 missing
X3Avnumeric44 unique values
0 missing
X4Avnumeric30 unique values
0 missing
ATSC1vnumeric91 unique values
0 missing
ATSC2mnumeric93 unique values
0 missing
ATSC2vnumeric91 unique values
0 missing
ATSC3pnumeric92 unique values
0 missing
ATSC3vnumeric93 unique values
0 missing
ATSC4mnumeric92 unique values
0 missing
ATSC4pnumeric92 unique values
0 missing
ATSC4vnumeric93 unique values
0 missing
ATSC6vnumeric93 unique values
0 missing
Chi0_EA.dm.numeric83 unique values
0 missing
GGI1numeric26 unique values
0 missing
ATSC1mnumeric89 unique values
0 missing
NsssNnumeric4 unique values
0 missing
SM03_EA.ed.numeric56 unique values
0 missing
SM10_EA.ed.numeric70 unique values
0 missing
SM11_EA.ed.numeric69 unique values
0 missing
SM12_EA.ed.numeric71 unique values
0 missing
SM13_EA.ed.numeric69 unique values
0 missing
SM14_AEA.ed.numeric71 unique values
0 missing
SM14_EA.ed.numeric65 unique values
0 missing

62 properties

94
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.7
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.77
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.77
Mean skewness among attributes of the numeric type.
6.8
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
19.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.52
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.61
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.8
Second quartile (Median) of standard deviation of attributes of the numeric type.
8.23
Maximum kurtosis among attributes of the numeric type.
-1.23
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
332.92
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.51
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
22.99
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.27
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.45
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.66
Third quartile of skewness among attributes of the numeric type.
176.26
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.07
First quartile of kurtosis among attributes of the numeric type.
7.12
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.52
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.01
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
43.32
Mean of means among attributes of the numeric type.
0.13
First quartile of skewness among attributes of the numeric type.
-0.68
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.33
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task