Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5971

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5971

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5971 (TID: 101400), and it has 404 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric260 unique values
0 missing
molecule_id (row identifier)nominal404 unique values
0 missing
SpMax4_Bh.p.numeric173 unique values
0 missing
CATS2D_05_LLnumeric26 unique values
0 missing
Eta_betaS_Anumeric93 unique values
0 missing
SaaCHnumeric361 unique values
0 missing
SpMax4_Bh.i.numeric156 unique values
0 missing
nCarnumeric19 unique values
0 missing
P_VSA_s_4numeric194 unique values
0 missing
nABnumeric16 unique values
0 missing
piPC07numeric214 unique values
0 missing
SpMax4_Bh.e.numeric164 unique values
0 missing
P_VSA_e_2numeric290 unique values
0 missing
P_VSA_i_2numeric289 unique values
0 missing
nArCONR2numeric2 unique values
0 missing
CATS2D_04_AAnumeric6 unique values
0 missing
P_VSA_MR_6numeric229 unique values
0 missing
Eig01_EA.bo.numeric101 unique values
0 missing
SM11_AEA.ri.numeric101 unique values
0 missing
SpDiam_EA.bo.numeric102 unique values
0 missing
SpMax_EA.bo.numeric101 unique values
0 missing
P_VSA_LogP_3numeric58 unique values
0 missing
CATS2D_02_AAnumeric8 unique values
0 missing
nCsp2numeric24 unique values
0 missing
SM14_EA.bo.numeric215 unique values
0 missing
SM15_EA.bo.numeric218 unique values
0 missing
RCInumeric24 unique values
0 missing
C.025numeric10 unique values
0 missing
SM13_EA.bo.numeric226 unique values
0 missing
SM12_EA.bo.numeric227 unique values
0 missing
RFDnumeric23 unique values
0 missing
nBMnumeric22 unique values
0 missing
Ucnumeric22 unique values
0 missing
SM04_EA.dm.numeric111 unique values
0 missing
SpMin4_Bh.m.numeric170 unique values
0 missing
ATSC4enumeric290 unique values
0 missing
Eta_betaPnumeric37 unique values
0 missing
SM06_EA.dm.numeric107 unique values
0 missing
nCconjnumeric6 unique values
0 missing
SM11_EA.bo.numeric228 unique values
0 missing
Eta_F_Anumeric246 unique values
0 missing
N.072numeric6 unique values
0 missing
C.002numeric12 unique values
0 missing
GATS7snumeric328 unique values
0 missing
MATS1inumeric192 unique values
0 missing
C.024numeric16 unique values
0 missing
SM10_EA.dm.numeric89 unique values
0 missing
SM12_EA.dm.numeric84 unique values
0 missing
SM14_EA.dm.numeric79 unique values
0 missing
SM08_EA.dm.numeric101 unique values
0 missing
C.041numeric3 unique values
0 missing
nHAccnumeric10 unique values
0 missing
SpMin1_Bh.v.numeric104 unique values
0 missing
Eta_betaP_Anumeric139 unique values
0 missing
SpMin1_Bh.p.numeric93 unique values
0 missing
nCONNnumeric3 unique values
0 missing
SRW09numeric44 unique values
0 missing
GATS1inumeric233 unique values
0 missing
C.003numeric5 unique values
0 missing
SM10_EA.bo.numeric231 unique values
0 missing
MATS4snumeric204 unique values
0 missing
GATS5pnumeric220 unique values
0 missing
ATSC2snumeric355 unique values
0 missing
SpDiam_AEA.bo.numeric108 unique values
0 missing
SpMax4_Bh.v.numeric176 unique values
0 missing
piPC06numeric200 unique values
0 missing

62 properties

404
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.16
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.08
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.03
Mean skewness among attributes of the numeric type.
4.29
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.32
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.21
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.25
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.64
Second quartile (Median) of standard deviation of attributes of the numeric type.
17.92
Maximum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
149.63
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.9
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
16.59
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.1
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.75
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.66
Third quartile of skewness among attributes of the numeric type.
38.15
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.43
First quartile of kurtosis among attributes of the numeric type.
3.42
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.26
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.24
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.12
Mean of means among attributes of the numeric type.
-0.53
First quartile of skewness among attributes of the numeric type.
0.41
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.16
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task