Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5360

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5360

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5360 (TID: 100927), and it has 71 rows and 60 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

62 features

pXC50 (target)numeric57 unique values
0 missing
molecule_id (row identifier)nominal71 unique values
0 missing
SpMin4_Bh.v.numeric61 unique values
0 missing
SpMax7_Bh.e.numeric53 unique values
0 missing
SpMin3_Bh.p.numeric61 unique values
0 missing
SpMax7_Bh.i.numeric55 unique values
0 missing
SpMin2_Bh.s.numeric57 unique values
0 missing
Eig02_EAnumeric46 unique values
0 missing
SM10_AEA.bo.numeric46 unique values
0 missing
Eig02_EA.bo.numeric40 unique values
0 missing
piPC03numeric50 unique values
0 missing
SM12_AEA.ri.numeric40 unique values
0 missing
SpMax6_Bh.v.numeric62 unique values
0 missing
ATS4vnumeric69 unique values
0 missing
SpMax5_Bh.p.numeric58 unique values
0 missing
SpMax5_Bh.v.numeric62 unique values
0 missing
Eig14_EA.ri.numeric58 unique values
0 missing
SpMax6_Bh.e.numeric61 unique values
0 missing
PW5numeric26 unique values
0 missing
SpMin2_Bh.v.numeric45 unique values
0 missing
SpMax7_Bh.v.numeric58 unique values
0 missing
Eig15_AEA.dm.numeric50 unique values
0 missing
SpMin8_Bh.v.numeric61 unique values
0 missing
SpMax7_Bh.p.numeric56 unique values
0 missing
SpMin7_Bh.m.numeric59 unique values
0 missing
SpMin8_Bh.p.numeric58 unique values
0 missing
SpMin2_Bh.e.numeric47 unique values
0 missing
SpMin2_Bh.i.numeric53 unique values
0 missing
SpMin2_Bh.p.numeric50 unique values
0 missing
ATS3vnumeric68 unique values
0 missing
ATS4pnumeric71 unique values
0 missing
SpMax6_Bh.i.numeric65 unique values
0 missing
SpMin7_Bh.s.numeric46 unique values
0 missing
SpMin4_Bh.p.numeric64 unique values
0 missing
ATS5vnumeric69 unique values
0 missing
MWC09numeric55 unique values
0 missing
ATSC8vnumeric71 unique values
0 missing
SpMax5_Bh.i.numeric61 unique values
0 missing
SpMax6_Bh.p.numeric65 unique values
0 missing
SpMin4_Bh.s.numeric50 unique values
0 missing
SpMax2_Bh.i.numeric53 unique values
0 missing
X3numeric57 unique values
0 missing
Eig02_AEA.bo.numeric43 unique values
0 missing
MPC10numeric44 unique values
0 missing
piPC04numeric55 unique values
0 missing
Eig02_AEA.ri.numeric63 unique values
0 missing
MWC06numeric52 unique values
0 missing
MWC07numeric56 unique values
0 missing
MWC08numeric57 unique values
0 missing
Eig10_AEA.dm.numeric43 unique values
0 missing
SpMax2_Bh.v.numeric46 unique values
0 missing
ATS1snumeric68 unique values
0 missing
CATS2D_09_LLnumeric11 unique values
0 missing
ATSC7inumeric70 unique values
0 missing
SpMin3_Bh.i.numeric45 unique values
0 missing
GGI4numeric48 unique values
0 missing
GGI8numeric42 unique values
0 missing
ATS2vnumeric65 unique values
0 missing
SpMin3_Bh.v.numeric52 unique values
0 missing
CIC1numeric68 unique values
0 missing
TWCnumeric55 unique values
0 missing
Eig13_EA.bo.numeric47 unique values
0 missing

62 properties

71
Number of instances (rows) of the dataset.
62
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
61
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.87
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.18
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.53
Mean skewness among attributes of the numeric type.
2.95
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.32
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.63
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.79
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.23
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.09
Maximum kurtosis among attributes of the numeric type.
-0.64
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
12.36
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.62
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.39
Percentage of numeric attributes.
3.9
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.24
Minimum skewness among attributes of the numeric type.
1.61
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.35
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-0.14
Third quartile of skewness among attributes of the numeric type.
2.36
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.27
First quartile of kurtosis among attributes of the numeric type.
0.27
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.53
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.75
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
3.18
Mean of means among attributes of the numeric type.
-0.9
First quartile of skewness among attributes of the numeric type.
0.63
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task