Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2026

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2026

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2026 (TID: 10027), and it has 213 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric133 unique values
0 missing
molecule_id (row identifier)nominal213 unique values
0 missing
MATS1pnumeric135 unique values
0 missing
GATS1inumeric160 unique values
0 missing
MATS1mnumeric141 unique values
0 missing
GATS1pnumeric165 unique values
0 missing
CATS2D_03_ANnumeric4 unique values
0 missing
AACnumeric160 unique values
0 missing
IC0numeric160 unique values
0 missing
CATS2D_02_AAnumeric10 unique values
0 missing
C.numeric98 unique values
0 missing
Eta_betaS_Anumeric82 unique values
0 missing
P_VSA_i_1numeric26 unique values
0 missing
NsssNnumeric4 unique values
0 missing
CATS2D_01_ANnumeric7 unique values
0 missing
MATS4enumeric161 unique values
0 missing
SsssNnumeric93 unique values
0 missing
nSO2OHnumeric4 unique values
0 missing
P_VSA_i_2numeric134 unique values
0 missing
Eig13_EA.ed.numeric129 unique values
0 missing
SM08_AEA.ri.numeric129 unique values
0 missing
SddssSnumeric77 unique values
0 missing
BLTA96numeric157 unique values
0 missing
BLTD48numeric158 unique values
0 missing
BLTF96numeric153 unique values
0 missing
MLOGPnumeric176 unique values
0 missing
ATS2vnumeric132 unique values
0 missing
nPyrrolidinesnumeric2 unique values
0 missing
Eig15_EA.ri.numeric127 unique values
0 missing
ALOGPnumeric187 unique values
0 missing
MATS6vnumeric125 unique values
0 missing
MLOGP2numeric172 unique values
0 missing
MATS1vnumeric93 unique values
0 missing
GATS5snumeric178 unique values
0 missing
IC1numeric171 unique values
0 missing
MATS6snumeric173 unique values
0 missing
P_VSA_MR_6numeric111 unique values
0 missing
P_VSA_s_4numeric97 unique values
0 missing
MATS3pnumeric160 unique values
0 missing
PCRnumeric149 unique values
0 missing
JGI3numeric78 unique values
0 missing
P_VSA_m_4numeric33 unique values
0 missing
SIC1numeric139 unique values
0 missing
MATS6enumeric170 unique values
0 missing
CATS2D_02_LLnumeric30 unique values
0 missing
SssOnumeric39 unique values
0 missing
SIC0numeric122 unique values
0 missing
CIC3numeric158 unique values
0 missing
SpMax1_Bh.v.numeric99 unique values
0 missing
BIC0numeric116 unique values
0 missing
IC2numeric173 unique values
0 missing
CATS2D_01_LLnumeric25 unique values
0 missing
C.025numeric11 unique values
0 missing
MATS1inumeric150 unique values
0 missing
MAXDNnumeric185 unique values
0 missing
CATS2D_04_LLnumeric25 unique values
0 missing
D.Dtr08numeric26 unique values
0 missing
SdsCHnumeric58 unique values
0 missing
AECCnumeric160 unique values
0 missing
ALOGP2numeric185 unique values
0 missing
AMRnumeric188 unique values
0 missing
AMWnumeric176 unique values
0 missing
ARRnumeric88 unique values
0 missing
ATS1enumeric178 unique values
0 missing
ATS1inumeric169 unique values
0 missing
ATS1mnumeric176 unique values
0 missing
ATS1pnumeric180 unique values
0 missing
ATS1snumeric176 unique values
0 missing
ATS1vnumeric131 unique values
0 missing
ATS2enumeric177 unique values
0 missing

62 properties

213
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.33
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.89
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.38
Mean skewness among attributes of the numeric type.
1.31
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
5.47
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.53
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.37
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.58
Second quartile (Median) of standard deviation of attributes of the numeric type.
183.75
Maximum kurtosis among attributes of the numeric type.
-2.68
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
83.8
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.45
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
4.4
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.13
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
13.11
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.97
Third quartile of skewness among attributes of the numeric type.
41.16
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.32
First quartile of kurtosis among attributes of the numeric type.
2.56
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.08
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
11.9
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.16
Mean of means among attributes of the numeric type.
-0.24
First quartile of skewness among attributes of the numeric type.
0.01
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task