Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5038

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5038

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5038 (TID: 20162), and it has 156 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric37 unique values
0 missing
molecule_id (row identifier)nominal156 unique values
0 missing
NaasCnumeric6 unique values
0 missing
SaaaCnumeric53 unique values
0 missing
NNRSnumeric10 unique values
0 missing
ATS8vnumeric130 unique values
0 missing
RCInumeric19 unique values
0 missing
SpMax4_Bh.e.numeric86 unique values
0 missing
RFDnumeric18 unique values
0 missing
MAXDPnumeric134 unique values
0 missing
NRSnumeric4 unique values
0 missing
CATS2D_09_ALnumeric15 unique values
0 missing
ATS8pnumeric131 unique values
0 missing
Eig13_AEA.bo.numeric75 unique values
0 missing
SpMin1_Bh.m.numeric56 unique values
0 missing
ATS8mnumeric129 unique values
0 missing
SpMax4_Bh.m.numeric87 unique values
0 missing
ATS7vnumeric129 unique values
0 missing
GGI10numeric90 unique values
0 missing
NaaaCnumeric3 unique values
0 missing
ATS7mnumeric132 unique values
0 missing
ATS8snumeric136 unique values
0 missing
ATSC8pnumeric141 unique values
0 missing
ATSC8inumeric135 unique values
0 missing
Eta_betaS_Anumeric53 unique values
0 missing
ATS8enumeric132 unique values
0 missing
SpMin5_Bh.i.numeric71 unique values
0 missing
ATSC4snumeric143 unique values
0 missing
SpMaxA_EA.bo.numeric50 unique values
0 missing
P_VSA_MR_5numeric96 unique values
0 missing
DLS_consnumeric23 unique values
0 missing
SpMin5_Bh.e.numeric74 unique values
0 missing
Eig11_AEA.dm.numeric97 unique values
0 missing
ATS6mnumeric129 unique values
0 missing
ATS7pnumeric127 unique values
0 missing
SpMax5_Bh.p.numeric98 unique values
0 missing
Rbridnumeric4 unique values
0 missing
SpMax5_Bh.v.numeric102 unique values
0 missing
ATS7snumeric131 unique values
0 missing
P_VSA_MR_6numeric82 unique values
0 missing
SM08_EA.bo.numeric110 unique values
0 missing
Eig12_AEA.bo.numeric82 unique values
0 missing
piPC08numeric109 unique values
0 missing
SpMin6_Bh.s.numeric70 unique values
0 missing
Eig10_AEA.dm.numeric97 unique values
0 missing
piPC05numeric95 unique values
0 missing
SpMin6_Bh.p.numeric106 unique values
0 missing
SpMaxA_AEA.bo.numeric48 unique values
0 missing
VvdwZAZnumeric123 unique values
0 missing
HDcpxnumeric64 unique values
0 missing
piPC09numeric115 unique values
0 missing
nPyridinesnumeric2 unique values
0 missing
SpMin6_Bh.v.numeric105 unique values
0 missing
C.029numeric2 unique values
0 missing
MATS2pnumeric102 unique values
0 missing
ON1numeric97 unique values
0 missing
Eta_alphanumeric104 unique values
0 missing
Chi0_EA.ed.numeric117 unique values
0 missing
SpMin6_Bh.i.numeric97 unique values
0 missing
CENTnumeric112 unique values
0 missing
BIDnumeric34 unique values
0 missing
IDMnumeric100 unique values
0 missing
piPC06numeric108 unique values
0 missing
Eta_betanumeric55 unique values
0 missing
SpMin5_Bh.v.numeric65 unique values
0 missing
Chi1_EA.ed.numeric116 unique values
0 missing

62 properties

156
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.42
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.07
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2.57
Mean skewness among attributes of the numeric type.
3.69
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
204.23
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.02
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.36
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.31
Second quartile (Median) of standard deviation of attributes of the numeric type.
154.06
Maximum kurtosis among attributes of the numeric type.
0.02
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
3932.21
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
30.22
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
6.24
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.05
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
12.37
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.52
Third quartile of skewness among attributes of the numeric type.
12894.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.04
First quartile of kurtosis among attributes of the numeric type.
1.21
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.42
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
28.02
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
76.62
Mean of means among attributes of the numeric type.
-0.16
First quartile of skewness among attributes of the numeric type.
0.39
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.1
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task