Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4393

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4393

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4393 (TID: 11871), and it has 462 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric274 unique values
0 missing
molecule_id (row identifier)nominal462 unique values
0 missing
P_VSA_i_3numeric312 unique values
0 missing
ATSC2pnumeric395 unique values
0 missing
ATSC3pnumeric408 unique values
0 missing
ATS4snumeric365 unique values
0 missing
ATSC4pnumeric429 unique values
0 missing
P_VSA_p_2numeric185 unique values
0 missing
ATS3snumeric351 unique values
0 missing
TPSA.Tot.numeric195 unique values
0 missing
Uindexnumeric331 unique values
0 missing
ATS7snumeric380 unique values
0 missing
SPInumeric332 unique values
0 missing
SpMax4_Bh.p.numeric294 unique values
0 missing
ATS8snumeric386 unique values
0 missing
ATS6snumeric370 unique values
0 missing
MAXDPnumeric374 unique values
0 missing
ATS2snumeric356 unique values
0 missing
SpMin4_Bh.s.numeric275 unique values
0 missing
P_VSA_s_1numeric8 unique values
0 missing
SpMax8_Bh.m.numeric272 unique values
0 missing
Eig04_AEA.dm.numeric267 unique values
0 missing
SpMax3_Bh.p.numeric267 unique values
0 missing
SpMax3_Bh.v.numeric270 unique values
0 missing
GGI1numeric24 unique values
0 missing
TPSA.NO.numeric185 unique values
0 missing
CATS2D_07_ANnumeric3 unique values
0 missing
SpMax8_Bh.s.numeric310 unique values
0 missing
CATS2D_09_NLnumeric5 unique values
0 missing
ATS5mnumeric365 unique values
0 missing
Psi_i_snumeric332 unique values
0 missing
SAaccnumeric206 unique values
0 missing
SpMin4_Bh.v.numeric290 unique values
0 missing
SpMax5_Bh.s.numeric238 unique values
0 missing
ATSC4mnumeric437 unique values
0 missing
SpMin4_Bh.p.numeric288 unique values
0 missing
ATS4mnumeric379 unique values
0 missing
GGI2numeric35 unique values
0 missing
PHInumeric368 unique values
0 missing
P_VSA_s_6numeric188 unique values
0 missing
SpMax6_Bh.e.numeric260 unique values
0 missing
P_VSA_MR_1numeric74 unique values
0 missing
SpMin3_Bh.i.numeric259 unique values
0 missing
ZM2Madnumeric412 unique values
0 missing
O.058numeric9 unique values
0 missing
ATS3mnumeric348 unique values
0 missing
SpMax3_Bh.m.numeric284 unique values
0 missing
P_VSA_v_2numeric210 unique values
0 missing
SaaOnumeric67 unique values
0 missing
NdOnumeric9 unique values
0 missing
GGI4numeric262 unique values
0 missing
SM05_EAnumeric117 unique values
0 missing
SpMax1_Bh.i.numeric190 unique values
0 missing
NaaOnumeric3 unique values
0 missing
SsOHnumeric230 unique values
0 missing
SpMin1_Bh.p.numeric118 unique values
0 missing
MATS1mnumeric181 unique values
0 missing
ZM2MulPernumeric410 unique values
0 missing
ZM2Vnumeric247 unique values
0 missing
ATSC8mnumeric428 unique values
0 missing
ZM2Pernumeric409 unique values
0 missing
ZM1Kupnumeric392 unique values
0 missing
NddssSnumeric3 unique values
0 missing
S.110numeric3 unique values
0 missing
ATSC3snumeric432 unique values
0 missing
Eig03_AEA.ri.numeric277 unique values
0 missing
Eta_betaPnumeric48 unique values
0 missing
SpMin1_Bh.s.numeric189 unique values
0 missing
SpMin4_Bh.m.numeric266 unique values
0 missing
CATS2D_03_NLnumeric4 unique values
0 missing

62 properties

462
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.15
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.57
Mean skewness among attributes of the numeric type.
5.38
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
19.69
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.48
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.16
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.93
Second quartile (Median) of standard deviation of attributes of the numeric type.
118.42
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
700.12
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.02
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
30.59
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.04
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
8.23
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.31
Third quartile of skewness among attributes of the numeric type.
192.36
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.16
First quartile of kurtosis among attributes of the numeric type.
14.88
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.61
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
5.71
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
60.79
Mean of means among attributes of the numeric type.
-0.66
First quartile of skewness among attributes of the numeric type.
0.01
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.34
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task