Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293249

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293249

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1293249 (TID: 103682), and it has 122 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric112 unique values
0 missing
molecule_id (row identifier)nominal122 unique values
0 missing
AACnumeric108 unique values
0 missing
AECCnumeric95 unique values
0 missing
ALOGPnumeric121 unique values
0 missing
ALOGP2numeric121 unique values
0 missing
AMRnumeric121 unique values
0 missing
AMWnumeric112 unique values
0 missing
ARRnumeric58 unique values
0 missing
ATS1enumeric104 unique values
0 missing
ATS1inumeric109 unique values
0 missing
ATS1mnumeric110 unique values
0 missing
ATS1pnumeric104 unique values
0 missing
ATS1snumeric114 unique values
0 missing
ATS1vnumeric109 unique values
0 missing
ATS2enumeric109 unique values
0 missing
ATS2inumeric112 unique values
0 missing
ATS2mnumeric111 unique values
0 missing
ATS2pnumeric109 unique values
0 missing
ATS2snumeric110 unique values
0 missing
ATS2vnumeric115 unique values
0 missing
ATS3enumeric107 unique values
0 missing
ATS3inumeric115 unique values
0 missing
ATS3mnumeric117 unique values
0 missing
ATS3pnumeric116 unique values
0 missing
ATS3snumeric112 unique values
0 missing
ATS3vnumeric108 unique values
0 missing
ATS4enumeric111 unique values
0 missing
ATS4inumeric118 unique values
0 missing
ATS4mnumeric114 unique values
0 missing
ATS4pnumeric114 unique values
0 missing
ATS4snumeric114 unique values
0 missing
ATS4vnumeric113 unique values
0 missing
ATS5enumeric117 unique values
0 missing
ATS5inumeric116 unique values
0 missing
ATS5mnumeric116 unique values
0 missing
ATS5pnumeric117 unique values
0 missing
ATS5snumeric113 unique values
0 missing
ATS5vnumeric113 unique values
0 missing
ATS6enumeric117 unique values
0 missing
ATS6inumeric116 unique values
0 missing
ATS6mnumeric114 unique values
0 missing
ATS6pnumeric116 unique values
0 missing
ATS6snumeric118 unique values
0 missing
ATS6vnumeric116 unique values
0 missing
ATS7enumeric116 unique values
0 missing
ATS7inumeric119 unique values
0 missing
ATS7mnumeric117 unique values
0 missing
ATS7pnumeric114 unique values
0 missing
ATS7snumeric120 unique values
0 missing
ATS7vnumeric113 unique values
0 missing
ATS8enumeric122 unique values
0 missing
ATS8inumeric117 unique values
0 missing
ATS8mnumeric119 unique values
0 missing
ATS8pnumeric113 unique values
0 missing
ATS8snumeric118 unique values
0 missing
ATS8vnumeric116 unique values
0 missing
ATSC1enumeric90 unique values
0 missing
ATSC1inumeric100 unique values
0 missing
ATSC1mnumeric120 unique values
0 missing
ATSC1pnumeric117 unique values
0 missing
ATSC1snumeric122 unique values
0 missing
ATSC1vnumeric118 unique values
0 missing
ATSC2enumeric103 unique values
0 missing
ATSC2inumeric107 unique values
0 missing
ATSC2mnumeric121 unique values
0 missing
ATSC2pnumeric120 unique values
0 missing
ATSC2snumeric122 unique values
0 missing

62 properties

122
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.56
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
3.61
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.34
Mean skewness among attributes of the numeric type.
3.88
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.37
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.4
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.45
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.37
Second quartile (Median) of standard deviation of attributes of the numeric type.
12.29
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
89.54
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.79
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
5.22
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.97
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.19
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.66
Third quartile of skewness among attributes of the numeric type.
25.06
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.64
First quartile of kurtosis among attributes of the numeric type.
0.46
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.45
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.91
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.06
Mean of means among attributes of the numeric type.
1.02
First quartile of skewness among attributes of the numeric type.
0.48
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task