Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2288

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2288

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2288 (TID: 12883), and it has 150 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric106 unique values
0 missing
molecule_id (row identifier)nominal150 unique values
0 missing
P_VSA_LogP_4numeric43 unique values
0 missing
SsOHnumeric133 unique values
0 missing
SpMAD_EA.dm.numeric104 unique values
0 missing
Eig04_EA.bo.numeric108 unique values
0 missing
SM14_AEA.ri.numeric108 unique values
0 missing
SpMin2_Bh.s.numeric95 unique values
0 missing
Eig01_AEA.ed.numeric62 unique values
0 missing
SpMax_AEA.ed.numeric62 unique values
0 missing
Eig01_EA.ed.numeric76 unique values
0 missing
SM10_AEA.dm.numeric76 unique values
0 missing
SpMax_EA.ed.numeric76 unique values
0 missing
P_VSA_p_2numeric56 unique values
0 missing
Eig01_EAnumeric78 unique values
0 missing
SM09_AEA.bo.numeric78 unique values
0 missing
SpDiam_EAnumeric79 unique values
0 missing
SpMax_EAnumeric78 unique values
0 missing
Eta_beta_Anumeric106 unique values
0 missing
DLS_04numeric9 unique values
0 missing
SM15_EA.ed.numeric120 unique values
0 missing
SpMaxA_EA.dm.numeric58 unique values
0 missing
SpDiam_AEA.ri.numeric94 unique values
0 missing
Eig01_EA.dm.numeric27 unique values
0 missing
SM02_EA.dm.numeric59 unique values
0 missing
SM04_EA.dm.numeric62 unique values
0 missing
SM06_EA.dm.numeric60 unique values
0 missing
SM08_EA.dm.numeric55 unique values
0 missing
SM10_EA.dm.numeric55 unique values
0 missing
SM12_EA.dm.numeric54 unique values
0 missing
SM14_EA.dm.numeric52 unique values
0 missing
SpAD_EA.dm.numeric62 unique values
0 missing
SpDiam_EA.dm.numeric34 unique values
0 missing
SpMax_EA.dm.numeric27 unique values
0 missing
TPSA.Tot.numeric63 unique values
0 missing
piPC09numeric128 unique values
0 missing
TPSA.NO.numeric56 unique values
0 missing
AACnumeric111 unique values
0 missing
AECCnumeric118 unique values
0 missing
ALOGPnumeric141 unique values
0 missing
ALOGP2numeric141 unique values
0 missing
AMRnumeric141 unique values
0 missing
AMWnumeric129 unique values
0 missing
ARRnumeric75 unique values
0 missing
ATS1enumeric129 unique values
0 missing
ATS1inumeric123 unique values
0 missing
ATS1mnumeric128 unique values
0 missing
ATS1pnumeric127 unique values
0 missing
ATS1snumeric127 unique values
0 missing
ATS1vnumeric123 unique values
0 missing
ATS2enumeric126 unique values
0 missing
ATS2inumeric128 unique values
0 missing
ATS2mnumeric130 unique values
0 missing
ATS2pnumeric130 unique values
0 missing
ATS2snumeric137 unique values
0 missing
ATS2vnumeric131 unique values
0 missing
ATS3enumeric132 unique values
0 missing
ATS3inumeric124 unique values
0 missing
ATS3mnumeric136 unique values
0 missing
ATS3pnumeric132 unique values
0 missing
ATS3snumeric136 unique values
0 missing
ATS3vnumeric130 unique values
0 missing
ATS4enumeric134 unique values
0 missing
ATS4inumeric137 unique values
0 missing
ATS4mnumeric139 unique values
0 missing
ATS4pnumeric135 unique values
0 missing
ATS4snumeric140 unique values
0 missing

62 properties

150
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.45
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.16
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.82
Mean skewness among attributes of the numeric type.
4.81
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
10.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.09
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.52
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.55
Second quartile (Median) of standard deviation of attributes of the numeric type.
10.02
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
224.85
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.7
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
8
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.56
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.08
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.45
Third quartile of skewness among attributes of the numeric type.
170.8
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.15
First quartile of kurtosis among attributes of the numeric type.
1.31
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.52
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.97
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
17.69
Mean of means among attributes of the numeric type.
0.12
First quartile of skewness among attributes of the numeric type.
0.21
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.41
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task