Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2756

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2756

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2756 (TID: 12232), and it has 269 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric189 unique values
0 missing
molecule_id (row identifier)nominal269 unique values
0 missing
Eig06_EAnumeric132 unique values
0 missing
SM14_AEA.bo.numeric132 unique values
0 missing
DBInumeric34 unique values
0 missing
nR.Csnumeric3 unique values
0 missing
MATS5enumeric187 unique values
0 missing
Eig06_AEA.ri.numeric174 unique values
0 missing
Eig04_AEA.dm.numeric205 unique values
0 missing
nNnumeric6 unique values
0 missing
Eig06_EA.ed.numeric153 unique values
0 missing
SM15_AEA.dm.numeric153 unique values
0 missing
MATS3enumeric175 unique values
0 missing
CATS2D_09_ALnumeric10 unique values
0 missing
SssOnumeric98 unique values
0 missing
nR05numeric4 unique values
0 missing
MCDnumeric65 unique values
0 missing
MATS2inumeric181 unique values
0 missing
IC3numeric169 unique values
0 missing
MATS2enumeric181 unique values
0 missing
SRW05numeric5 unique values
0 missing
SRW07numeric11 unique values
0 missing
SRW09numeric22 unique values
0 missing
N.numeric62 unique values
0 missing
P_VSA_e_3numeric35 unique values
0 missing
SpMin3_Bh.i.numeric166 unique values
0 missing
CATS2D_05_ALnumeric14 unique values
0 missing
SsssNnumeric147 unique values
0 missing
Eig15_AEA.ri.numeric135 unique values
0 missing
P_VSA_m_2numeric208 unique values
0 missing
Eig06_EA.ri.numeric179 unique values
0 missing
GGI10numeric58 unique values
0 missing
SpMax2_Bh.p.numeric157 unique values
0 missing
IC2numeric192 unique values
0 missing
VvdwZAZnumeric178 unique values
0 missing
SpMax6_Bh.m.numeric166 unique values
0 missing
SpMin3_Bh.e.numeric169 unique values
0 missing
N.068numeric3 unique values
0 missing
nRNR2numeric3 unique values
0 missing
C.043numeric2 unique values
0 missing
SpMax2_Bh.s.numeric153 unique values
0 missing
O.060numeric5 unique values
0 missing
ZM1MulPernumeric227 unique values
0 missing
ICRnumeric122 unique values
0 missing
CATS2D_09_LLnumeric16 unique values
0 missing
Mvnumeric109 unique values
0 missing
SpMax2_Bh.m.numeric163 unique values
0 missing
NssOnumeric5 unique values
0 missing
Psi_i_0numeric208 unique values
0 missing
Eig05_AEA.dm.numeric185 unique values
0 missing
ZM1Vnumeric125 unique values
0 missing
Chi1_EA.bo.numeric194 unique values
0 missing
CATS2D_09_AAnumeric5 unique values
0 missing
ATS1vnumeric180 unique values
0 missing
Psi_i_1numeric230 unique values
0 missing
P_VSA_p_2numeric59 unique values
0 missing
SpMax8_Bh.m.numeric166 unique values
0 missing
CATS2D_07_AAnumeric4 unique values
0 missing
nRCOORnumeric4 unique values
0 missing
N.075numeric3 unique values
0 missing
NaaNnumeric3 unique values
0 missing
SaaNnumeric45 unique values
0 missing
GGI1numeric15 unique values
0 missing
MATS5mnumeric185 unique values
0 missing
Eig05_AEA.bo.numeric147 unique values
0 missing
Eig07_AEA.bo.numeric146 unique values
0 missing

62 properties

269
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.25
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.99
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.69
Mean skewness among attributes of the numeric type.
2.2
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
7.35
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.43
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.34
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.63
Second quartile (Median) of standard deviation of attributes of the numeric type.
63.06
Maximum kurtosis among attributes of the numeric type.
-0.2
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
283.76
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.05
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
3.82
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.33
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
6.41
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.61
Third quartile of skewness among attributes of the numeric type.
129.96
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.57
First quartile of kurtosis among attributes of the numeric type.
2.16
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.55
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.98
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
17.43
Mean of means among attributes of the numeric type.
-0.69
First quartile of skewness among attributes of the numeric type.
-0.15
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.33
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task