Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1995

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1995

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1995 (TID: 143), and it has 393 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric185 unique values
0 missing
molecule_id (row identifier)nominal393 unique values
0 missing
nBnznumeric6 unique values
0 missing
nCb.numeric13 unique values
0 missing
GATS2vnumeric239 unique values
0 missing
P_VSA_MR_6numeric198 unique values
0 missing
piPC08numeric270 unique values
0 missing
Eta_FL_Anumeric144 unique values
0 missing
DLS_05numeric3 unique values
0 missing
nCarnumeric23 unique values
0 missing
piPC06numeric268 unique values
0 missing
piPC07numeric270 unique values
0 missing
NaaCHnumeric18 unique values
0 missing
piPC09numeric277 unique values
0 missing
X4Avnumeric68 unique values
0 missing
Eta_L_Anumeric140 unique values
0 missing
piPC05numeric263 unique values
0 missing
Eta_betaPnumeric54 unique values
0 missing
nCsp2numeric30 unique values
0 missing
JGI9numeric12 unique values
0 missing
CATS2D_09_NLnumeric5 unique values
0 missing
ATSC3mnumeric355 unique values
0 missing
PCDnumeric258 unique values
0 missing
nABnumeric17 unique values
0 missing
ATSC4mnumeric369 unique values
0 missing
DLS_04numeric9 unique values
0 missing
NaasCnumeric12 unique values
0 missing
SaasCnumeric336 unique values
0 missing
nCsp3numeric21 unique values
0 missing
P_VSA_LogP_5numeric168 unique values
0 missing
nR06numeric6 unique values
0 missing
ATSC2mnumeric315 unique values
0 missing
C.numeric114 unique values
0 missing
NRSnumeric6 unique values
0 missing
Eta_C_Anumeric283 unique values
0 missing
X0Anumeric59 unique values
0 missing
Uinumeric32 unique values
0 missing
C.008numeric4 unique values
0 missing
Eta_Lnumeric328 unique values
0 missing
piPC04numeric254 unique values
0 missing
H.050numeric6 unique values
0 missing
nHDonnumeric6 unique values
0 missing
nCIRnumeric9 unique values
0 missing
CATS2D_06_DDnumeric3 unique values
0 missing
Mvnumeric134 unique values
0 missing
D.Dtr06numeric249 unique values
0 missing
P_VSA_e_5numeric60 unique values
0 missing
Eta_FLnumeric310 unique values
0 missing
X2Avnumeric105 unique values
0 missing
SM04_EA.bo.numeric245 unique values
0 missing
GATS2pnumeric240 unique values
0 missing
X3Avnumeric88 unique values
0 missing
SpMin2_Bh.i.numeric148 unique values
0 missing
HNarnumeric119 unique values
0 missing
TPSA.NO.numeric111 unique values
0 missing
CATS2D_03_DLnumeric11 unique values
0 missing
GATS2inumeric241 unique values
0 missing
PHInumeric277 unique values
0 missing
nRCONR2numeric2 unique values
0 missing
O.060numeric5 unique values
0 missing
Eig03_AEA.bo.numeric199 unique values
0 missing
piPC03numeric214 unique values
0 missing
Eig03_EA.bo.numeric197 unique values
0 missing
SM13_AEA.ri.numeric197 unique values
0 missing
GATS1vnumeric210 unique values
0 missing
TIEnumeric371 unique values
0 missing
P_VSA_m_2numeric300 unique values
0 missing
CATS2D_04_DLnumeric10 unique values
0 missing

62 properties

393
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.17
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.07
Mean skewness among attributes of the numeric type.
3.36
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
7.31
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.11
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.27
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.93
Second quartile (Median) of standard deviation of attributes of the numeric type.
11.6
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
270.47
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.05
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
7.77
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.1
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.68
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.46
Third quartile of skewness among attributes of the numeric type.
162.59
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.6
First quartile of kurtosis among attributes of the numeric type.
4.32
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.01
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.06
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
17.58
Mean of means among attributes of the numeric type.
-0.34
First quartile of skewness among attributes of the numeric type.
0.28
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.24
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task