Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3478

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3478

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3478 (TID: 10602), and it has 203 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric109 unique values
0 missing
molecule_id (row identifier)nominal203 unique values
0 missing
CATS2D_03_DLnumeric9 unique values
0 missing
CATS2D_04_DLnumeric8 unique values
0 missing
SpMin1_Bh.s.numeric81 unique values
0 missing
GATS6vnumeric150 unique values
0 missing
CATS2D_02_DLnumeric6 unique values
0 missing
GATS6pnumeric149 unique values
0 missing
SpMax3_Bh.s.numeric83 unique values
0 missing
P_VSA_s_5numeric13 unique values
0 missing
SpMax6_Bh.m.numeric142 unique values
0 missing
SM09_EA.bo.numeric139 unique values
0 missing
SM10_EA.bo.numeric137 unique values
0 missing
SM11_EA.bo.numeric135 unique values
0 missing
SM12_EA.bo.numeric132 unique values
0 missing
SM13_EA.bo.numeric130 unique values
0 missing
CATS2D_05_DLnumeric7 unique values
0 missing
SM06_EA.bo.numeric143 unique values
0 missing
ATSC3snumeric182 unique values
0 missing
SM08_EA.bo.numeric142 unique values
0 missing
Eig01_EA.bo.numeric65 unique values
0 missing
SM11_AEA.ri.numeric65 unique values
0 missing
SM14_EA.bo.numeric132 unique values
0 missing
SM15_EA.bo.numeric123 unique values
0 missing
SpDiam_EA.bo.numeric65 unique values
0 missing
SpMax_EA.bo.numeric65 unique values
0 missing
SaaaCnumeric95 unique values
0 missing
SpMax6_Bh.e.numeric128 unique values
0 missing
MATS6pnumeric146 unique values
0 missing
Eig03_AEA.dm.numeric100 unique values
0 missing
nCconjnumeric5 unique values
0 missing
MATS6vnumeric148 unique values
0 missing
SpMax6_Bh.i.numeric125 unique values
0 missing
SM03_EA.dm.numeric29 unique values
0 missing
SM05_EA.dm.numeric35 unique values
0 missing
SM07_EA.dm.numeric34 unique values
0 missing
SM09_EA.dm.numeric32 unique values
0 missing
SM11_EA.dm.numeric32 unique values
0 missing
SM04_EA.dm.numeric70 unique values
0 missing
SpMax6_Bh.p.numeric122 unique values
0 missing
SpMax1_Bh.p.numeric81 unique values
0 missing
CATS2D_07_DAnumeric5 unique values
0 missing
SM05_EA.bo.numeric120 unique values
0 missing
SM07_EA.bo.numeric136 unique values
0 missing
Eig03_AEA.bo.numeric118 unique values
0 missing
NaaaCnumeric3 unique values
0 missing
SM06_EA.dm.numeric65 unique values
0 missing
SM13_EA.dm.numeric32 unique values
0 missing
SM15_EA.dm.numeric32 unique values
0 missing
SM04_EA.bo.numeric135 unique values
0 missing
piPC05numeric135 unique values
0 missing
SM03_EA.bo.numeric52 unique values
0 missing
SpMax2_Bh.v.numeric89 unique values
0 missing
SpMax1_Bh.v.numeric80 unique values
0 missing
nOnumeric7 unique values
0 missing
Eig08_AEA.dm.numeric142 unique values
0 missing
SM08_EA.dm.numeric56 unique values
0 missing
SM10_EA.dm.numeric49 unique values
0 missing
SM12_EA.dm.numeric47 unique values
0 missing
SM14_EA.dm.numeric46 unique values
0 missing
Hynumeric103 unique values
0 missing
SpMax2_Bh.p.numeric90 unique values
0 missing
SAdonnumeric16 unique values
0 missing
Eig04_AEA.dm.numeric120 unique values
0 missing
SpMax4_Bh.s.numeric110 unique values
0 missing

62 properties

203
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.32
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.19
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.01
Mean skewness among attributes of the numeric type.
4.26
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.58
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.2
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.43
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.48
Second quartile (Median) of standard deviation of attributes of the numeric type.
24.53
Maximum kurtosis among attributes of the numeric type.
-0.26
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
39.61
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.81
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
7.81
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.85
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.25
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.26
Third quartile of skewness among attributes of the numeric type.
19.32
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.39
First quartile of kurtosis among attributes of the numeric type.
1.44
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.61
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.12
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.7
Mean of means among attributes of the numeric type.
-0.77
First quartile of skewness among attributes of the numeric type.
-0.03
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.18
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task