Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1860

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1860

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1860 (TID: 59), and it has 449 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric273 unique values
0 missing
molecule_id (row identifier)nominal449 unique values
0 missing
nArOHnumeric3 unique values
0 missing
NsOHnumeric6 unique values
0 missing
O.057numeric4 unique values
0 missing
piPC10numeric317 unique values
0 missing
CATS2D_08_DLnumeric15 unique values
0 missing
H.050numeric7 unique values
0 missing
nHDonnumeric7 unique values
0 missing
NdOnumeric6 unique values
0 missing
nDBnumeric6 unique values
0 missing
GATS1inumeric288 unique values
0 missing
ALOGPnumeric382 unique values
0 missing
ALOGP2numeric396 unique values
0 missing
O.058numeric4 unique values
0 missing
SssOnumeric233 unique values
0 missing
CATS2D_01_ANnumeric3 unique values
0 missing
CATS2D_01_DNnumeric3 unique values
0 missing
NssOnumeric5 unique values
0 missing
nArORnumeric5 unique values
0 missing
JGI7numeric24 unique values
0 missing
O.060numeric5 unique values
0 missing
nRCONR2numeric2 unique values
0 missing
Eig04_EA.dm.numeric39 unique values
0 missing
GATS4snumeric359 unique values
0 missing
NssCH2numeric19 unique values
0 missing
CATS2D_05_AAnumeric10 unique values
0 missing
X.numeric59 unique values
0 missing
nXnumeric6 unique values
0 missing
nArXnumeric5 unique values
0 missing
NaasCnumeric11 unique values
0 missing
N.072numeric4 unique values
0 missing
CATS2D_04_ALnumeric20 unique values
0 missing
nS..O.2numeric2 unique values
0 missing
nCb.numeric11 unique values
0 missing
CATS2D_02_AAnumeric5 unique values
0 missing
P_VSA_s_1numeric6 unique values
0 missing
CATS2D_01_AAnumeric4 unique values
0 missing
N.076numeric3 unique values
0 missing
nArNO2numeric3 unique values
0 missing
NddsNnumeric3 unique values
0 missing
O.061numeric3 unique values
0 missing
GATS2mnumeric268 unique values
0 missing
NddssSnumeric2 unique values
0 missing
S.110numeric2 unique values
0 missing
CATS2D_09_NLnumeric5 unique values
0 missing
CATS2D_06_AAnumeric6 unique values
0 missing
MATS1snumeric191 unique values
0 missing
CATS2D_07_LLnumeric34 unique values
0 missing
GATS2pnumeric290 unique values
0 missing
Hynumeric219 unique values
0 missing
CATS2D_05_NLnumeric5 unique values
0 missing
P_VSA_MR_7numeric40 unique values
0 missing
MATS6mnumeric286 unique values
0 missing
nNnumeric6 unique values
0 missing
GATS1snumeric256 unique values
0 missing
MATS6enumeric286 unique values
0 missing
MATS1vnumeric129 unique values
0 missing
SpMAD_AEA.dm.numeric214 unique values
0 missing
CATS2D_09_DLnumeric10 unique values
0 missing
GATS4mnumeric292 unique values
0 missing
nRCOOHnumeric3 unique values
0 missing
GATS2vnumeric259 unique values
0 missing
MATS1inumeric216 unique values
0 missing
MATS1pnumeric179 unique values
0 missing
C.005numeric5 unique values
0 missing
SpMax1_Bh.m.numeric143 unique values
0 missing
P_VSA_LogP_4numeric63 unique values
0 missing

62 properties

449
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.15
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.45
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.65
Mean skewness among attributes of the numeric type.
0.9
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.46
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.74
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.55
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.9
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.48
Maximum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
93.51
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.38
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
2.33
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.18
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.38
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.05
Third quartile of skewness among attributes of the numeric type.
41.35
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.74
First quartile of kurtosis among attributes of the numeric type.
1.75
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.42
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.08
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
3.57
Mean of means among attributes of the numeric type.
0.25
First quartile of skewness among attributes of the numeric type.
0.15
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.44
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task