Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3942

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3942

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3942 (TID: 17073), and it has 391 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric271 unique values
0 missing
molecule_id (row identifier)nominal391 unique values
0 missing
CATS2D_03_DLnumeric24 unique values
0 missing
GATS2pnumeric254 unique values
0 missing
P_VSA_e_3numeric104 unique values
0 missing
Hynumeric258 unique values
0 missing
CATS2D_06_DAnumeric17 unique values
0 missing
GATS2inumeric243 unique values
0 missing
P_VSA_MR_5numeric259 unique values
0 missing
P_VSA_s_5numeric32 unique values
0 missing
TPSA.Tot.numeric208 unique values
0 missing
GATS2vnumeric221 unique values
0 missing
H.050numeric22 unique values
0 missing
nHDonnumeric22 unique values
0 missing
P_VSA_LogP_2numeric192 unique values
0 missing
CATS2D_02_DAnumeric14 unique values
0 missing
CATS2D_06_DDnumeric14 unique values
0 missing
P_VSA_p_2numeric197 unique values
0 missing
MATS2inumeric236 unique values
0 missing
DLS_06numeric6 unique values
0 missing
CATS2D_09_DAnumeric18 unique values
0 missing
P_VSA_v_2numeric211 unique values
0 missing
nRCONHRnumeric10 unique values
0 missing
CATS2D_03_DDnumeric12 unique values
0 missing
NssNHnumeric10 unique values
0 missing
SAdonnumeric90 unique values
0 missing
DLS_07numeric3 unique values
0 missing
SdssCnumeric310 unique values
0 missing
CATS2D_09_DDnumeric12 unique values
0 missing
SssNHnumeric227 unique values
0 missing
CATS2D_04_DLnumeric22 unique values
0 missing
SdOnumeric316 unique values
0 missing
CATS2D_09_DLnumeric27 unique values
0 missing
O.058numeric16 unique values
0 missing
DLS_consnumeric48 unique values
0 missing
NdOnumeric16 unique values
0 missing
SsssCHnumeric289 unique values
0 missing
MATS2pnumeric227 unique values
0 missing
MATS1enumeric143 unique values
0 missing
CATS2D_08_DDnumeric6 unique values
0 missing
CATS2D_06_DLnumeric23 unique values
0 missing
CATS2D_05_DAnumeric14 unique values
0 missing
Eig03_EA.dm.numeric72 unique values
0 missing
SAaccnumeric198 unique values
0 missing
Eig05_AEA.dm.numeric173 unique values
0 missing
P_VSA_LogP_4numeric96 unique values
0 missing
MATS2vnumeric202 unique values
0 missing
nArCONR2numeric2 unique values
0 missing
CATS2D_05_DLnumeric25 unique values
0 missing
ATSC5snumeric329 unique values
0 missing
C.040numeric15 unique values
0 missing
ATSC7snumeric332 unique values
0 missing
Eig05_EA.dm.numeric70 unique values
0 missing
P_VSA_i_4numeric122 unique values
0 missing
CATS2D_08_DLnumeric28 unique values
0 missing
ATS7snumeric293 unique values
0 missing
CATS2D_07_DLnumeric25 unique values
0 missing
nDBnumeric15 unique values
0 missing
nCconjnumeric5 unique values
0 missing
GATS7vnumeric189 unique values
0 missing
CATS2D_02_DLnumeric17 unique values
0 missing
P_VSA_MR_2numeric174 unique values
0 missing
NdssCnumeric14 unique values
0 missing
P_VSA_m_2numeric307 unique values
0 missing
BLTA96numeric249 unique values
0 missing
BLTD48numeric250 unique values
0 missing
BLTF96numeric246 unique values
0 missing
MLOGPnumeric293 unique values
0 missing

62 properties

391
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.17
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.58
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.74
Mean skewness among attributes of the numeric type.
3.73
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
25.97
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.91
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.85
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
3
Second quartile (Median) of standard deviation of attributes of the numeric type.
5.88
Maximum kurtosis among attributes of the numeric type.
-3.45
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
285.21
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.42
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
7.11
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.31
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.31
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.17
Third quartile of skewness among attributes of the numeric type.
149.83
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.4
First quartile of kurtosis among attributes of the numeric type.
6.61
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.03
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.62
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
39.13
Mean of means among attributes of the numeric type.
0.42
First quartile of skewness among attributes of the numeric type.
-0.33
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.81
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task