Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3768

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3768

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3768 (TID: 10441), and it has 304 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric170 unique values
0 missing
molecule_id (row identifier)nominal304 unique values
0 missing
ATSC7pnumeric233 unique values
0 missing
ATSC7mnumeric232 unique values
0 missing
ATSC7vnumeric229 unique values
0 missing
SIC1numeric108 unique values
0 missing
X2Avnumeric90 unique values
0 missing
Eta_epsi_Anumeric86 unique values
0 missing
ATSC8pnumeric231 unique values
0 missing
ATSC8vnumeric232 unique values
0 missing
CIC5numeric154 unique values
0 missing
P_VSA_e_1numeric50 unique values
0 missing
P_VSA_m_1numeric41 unique values
0 missing
P_VSA_p_1numeric42 unique values
0 missing
P_VSA_s_2numeric42 unique values
0 missing
P_VSA_v_1numeric41 unique values
0 missing
ATS7enumeric201 unique values
0 missing
CIC4numeric165 unique values
0 missing
CIC1numeric177 unique values
0 missing
SIC5numeric80 unique values
0 missing
ATS7inumeric202 unique values
0 missing
ATSC2pnumeric192 unique values
0 missing
X3Avnumeric71 unique values
0 missing
ATSC1pnumeric156 unique values
0 missing
ATS7pnumeric210 unique values
0 missing
H.numeric79 unique values
0 missing
ATSC2mnumeric195 unique values
0 missing
X4Avnumeric52 unique values
0 missing
X5Avnumeric41 unique values
0 missing
ATSC1vnumeric155 unique values
0 missing
ATSC3pnumeric218 unique values
0 missing
P_VSA_LogP_7numeric54 unique values
0 missing
SpMin3_Bh.m.numeric141 unique values
0 missing
SpMin3_Bh.v.numeric152 unique values
0 missing
ATS6enumeric200 unique values
0 missing
ATS8pnumeric214 unique values
0 missing
ATS4inumeric189 unique values
0 missing
ATS7vnumeric211 unique values
0 missing
SIC4numeric90 unique values
0 missing
GATS3mnumeric154 unique values
0 missing
SpMax3_Bh.p.numeric166 unique values
0 missing
ATSC2vnumeric190 unique values
0 missing
BIC1numeric109 unique values
0 missing
BLInumeric157 unique values
0 missing
X1Avnumeric95 unique values
0 missing
CATS2D_05_DNnumeric4 unique values
0 missing
ATSC7inumeric219 unique values
0 missing
SpMin3_Bh.e.numeric151 unique values
0 missing
MATS3vnumeric118 unique values
0 missing
PHInumeric169 unique values
0 missing
CATS2D_09_NLnumeric7 unique values
0 missing
SdOnumeric229 unique values
0 missing
CIC0numeric147 unique values
0 missing
GATS6enumeric208 unique values
0 missing
SpMax3_Bh.i.numeric153 unique values
0 missing
ATS8enumeric208 unique values
0 missing
BIC3numeric107 unique values
0 missing
CIC3numeric174 unique values
0 missing
SpMax3_Bh.v.numeric167 unique values
0 missing
SpMAD_AEA.ed.numeric105 unique values
0 missing
ATSC8mnumeric233 unique values
0 missing
ATSC8inumeric220 unique values
0 missing
ATSC4vnumeric226 unique values
0 missing
GATS5vnumeric153 unique values
0 missing
SpMax3_Bh.m.numeric153 unique values
0 missing
SIC0numeric71 unique values
0 missing

62 properties

304
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.22
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.85
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.24
Mean skewness among attributes of the numeric type.
3.77
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.65
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.46
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.52
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.31
Second quartile (Median) of standard deviation of attributes of the numeric type.
28.01
Maximum kurtosis among attributes of the numeric type.
-0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
281.81
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.11
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
11.96
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.71
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.8
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.81
Third quartile of skewness among attributes of the numeric type.
61.89
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.79
First quartile of kurtosis among attributes of the numeric type.
3.08
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.91
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.07
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
30.53
Mean of means among attributes of the numeric type.
-0.47
First quartile of skewness among attributes of the numeric type.
-0.01
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.09
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task