Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4482

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4482

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4482 (TID: 100080), and it has 1157 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric92 unique values
0 missing
molecule_id (row identifier)nominal1157 unique values
0 missing
SaaNHnumeric308 unique values
0 missing
C.numeric155 unique values
0 missing
NaaNHnumeric3 unique values
0 missing
Chi1_EA.dm.numeric974 unique values
0 missing
N.073numeric4 unique values
0 missing
GATS1inumeric581 unique values
0 missing
Cl.090numeric2 unique values
0 missing
SpMin5_Bh.s.numeric547 unique values
0 missing
SpMin6_Bh.m.numeric527 unique values
0 missing
Chi0_EA.dm.numeric950 unique values
0 missing
SpMin7_Bh.m.numeric541 unique values
0 missing
Eta_betaP_Anumeric303 unique values
0 missing
SaaNnumeric902 unique values
0 missing
Mvnumeric175 unique values
0 missing
nCsnumeric12 unique values
0 missing
SssCH2numeric676 unique values
0 missing
SpMaxA_EA.dm.numeric131 unique values
0 missing
SpMin6_Bh.s.numeric532 unique values
0 missing
MATS1inumeric462 unique values
0 missing
nPyrrolesnumeric3 unique values
0 missing
SpMin7_Bh.v.numeric549 unique values
0 missing
ATSC3mnumeric1096 unique values
0 missing
Eig03_AEA.dm.numeric698 unique values
0 missing
nNnumeric13 unique values
0 missing
CATS2D_09_DLnumeric12 unique values
0 missing
SpMin4_Bh.v.numeric512 unique values
0 missing
XMODnumeric1085 unique values
0 missing
Eta_beta_Anumeric345 unique values
0 missing
Eig10_EAnumeric653 unique values
0 missing
SM04_AEA.dm.numeric653 unique values
0 missing
Eig10_EA.ri.numeric725 unique values
0 missing
SpMin5_Bh.v.numeric542 unique values
0 missing
C.008numeric4 unique values
0 missing
ATSC6mnumeric1129 unique values
0 missing
Eig03_EAnumeric571 unique values
0 missing
SM11_AEA.bo.numeric571 unique values
0 missing
Eig03_EA.bo.numeric621 unique values
0 missing
SM13_AEA.ri.numeric621 unique values
0 missing
nCsp3numeric17 unique values
0 missing
SpMin7_Bh.s.numeric428 unique values
0 missing
H.numeric197 unique values
0 missing
Eig10_AEA.ri.numeric735 unique values
0 missing
SpMin5_Bh.e.numeric545 unique values
0 missing
ATSC2mnumeric1057 unique values
0 missing
SpMax1_Bh.s.numeric202 unique values
0 missing
Eig03_AEA.ri.numeric607 unique values
0 missing
Eig09_AEA.ed.numeric690 unique values
0 missing
ATSC4mnumeric1120 unique values
0 missing
Psi_i_1numeric1052 unique values
0 missing
ATS1mnumeric647 unique values
0 missing
GMTIVnumeric1117 unique values
0 missing
P_VSA_LogP_6numeric239 unique values
0 missing
SaaaCnumeric622 unique values
0 missing
CATS2D_02_AAnumeric7 unique values
0 missing
SpMin5_Bh.p.numeric523 unique values
0 missing
Eta_L_Anumeric133 unique values
0 missing
Minumeric79 unique values
0 missing
SpMin4_Bh.p.numeric525 unique values
0 missing
Eta_betaSnumeric104 unique values
0 missing
SpMin1_Bh.s.numeric345 unique values
0 missing
Eig12_EA.bo.numeric719 unique values
0 missing
SpMaxA_AEA.ri.numeric181 unique values
0 missing
Eta_C_Anumeric480 unique values
0 missing
Eig11_EA.ri.numeric723 unique values
0 missing
X2numeric955 unique values
0 missing
ATSC8vnumeric1097 unique values
0 missing
ATSC5mnumeric1135 unique values
0 missing
SaaCHnumeric1108 unique values
0 missing
SpMax3_Bh.m.numeric491 unique values
0 missing

62 properties

1157
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.06
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.04
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.56
Mean skewness among attributes of the numeric type.
1.52
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
325.54
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.39
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.05
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.63
Second quartile (Median) of standard deviation of attributes of the numeric type.
197.76
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
30824.73
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.32
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
7.9
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.36
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
9.44
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.29
Third quartile of skewness among attributes of the numeric type.
22607.41
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.16
First quartile of kurtosis among attributes of the numeric type.
3.44
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.85
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
7.34
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
447.47
Mean of means among attributes of the numeric type.
-0.7
First quartile of skewness among attributes of the numeric type.
0.58
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task