Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2980

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2980

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2980 (TID: 17140), and it has 210 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric56 unique values
0 missing
molecule_id (row identifier)nominal210 unique values
0 missing
CATS2D_08_DLnumeric12 unique values
0 missing
GATS3vnumeric138 unique values
0 missing
Eta_Bnumeric79 unique values
0 missing
SM11_EA.bo.numeric152 unique values
0 missing
SM12_EA.bo.numeric146 unique values
0 missing
SM15_EA.bo.numeric142 unique values
0 missing
ATS3snumeric183 unique values
0 missing
SM13_EA.bo.numeric142 unique values
0 missing
SM14_EA.bo.numeric141 unique values
0 missing
ATSC3snumeric209 unique values
0 missing
SM09_EA.bo.numeric146 unique values
0 missing
H.052numeric4 unique values
0 missing
nROHnumeric4 unique values
0 missing
SpMax6_Bh.s.numeric129 unique values
0 missing
SM07_EA.bo.numeric147 unique values
0 missing
SpMax5_Bh.s.numeric104 unique values
0 missing
P_VSA_i_3numeric110 unique values
0 missing
GATS3pnumeric141 unique values
0 missing
MATS4snumeric158 unique values
0 missing
C.034numeric2 unique values
0 missing
D.Dtr05numeric20 unique values
0 missing
nR05numeric3 unique values
0 missing
SRW05numeric3 unique values
0 missing
SRW07numeric4 unique values
0 missing
SRW09numeric5 unique values
0 missing
AACnumeric113 unique values
0 missing
AECCnumeric154 unique values
0 missing
ALOGPnumeric171 unique values
0 missing
ALOGP2numeric174 unique values
0 missing
AMRnumeric175 unique values
0 missing
AMWnumeric128 unique values
0 missing
ARRnumeric40 unique values
0 missing
ATS1enumeric136 unique values
0 missing
ATS1inumeric144 unique values
0 missing
ATS1mnumeric132 unique values
0 missing
ATS1pnumeric150 unique values
0 missing
ATS1snumeric164 unique values
0 missing
ATS1vnumeric140 unique values
0 missing
ATS2enumeric154 unique values
0 missing
ATS2inumeric161 unique values
0 missing
ATS2mnumeric150 unique values
0 missing
ATS2pnumeric156 unique values
0 missing
ATS2snumeric166 unique values
0 missing
ATS2vnumeric162 unique values
0 missing
ATS3enumeric166 unique values
0 missing
ATS3inumeric160 unique values
0 missing
ATS3mnumeric159 unique values
0 missing
ATS3pnumeric171 unique values
0 missing
ATS3vnumeric174 unique values
0 missing
ATS4enumeric190 unique values
0 missing
ATS4inumeric170 unique values
0 missing
ATS4mnumeric181 unique values
0 missing
ATS4pnumeric191 unique values
0 missing
ATS4snumeric187 unique values
0 missing
ATS4vnumeric179 unique values
0 missing
ATS5enumeric182 unique values
0 missing
ATS5inumeric181 unique values
0 missing
ATS5mnumeric187 unique values
0 missing
ATS5pnumeric188 unique values
0 missing
ATS5snumeric171 unique values
0 missing
ATS5vnumeric184 unique values
0 missing
ATS6enumeric197 unique values
0 missing

62 properties

210
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.3
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
3.89
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.22
Mean skewness among attributes of the numeric type.
3.99
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.96
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.74
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.91
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.34
Second quartile (Median) of standard deviation of attributes of the numeric type.
23.05
Maximum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
307.06
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.65
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
5.9
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.29
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.26
Maximum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.68
Third quartile of skewness among attributes of the numeric type.
70.58
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.21
First quartile of kurtosis among attributes of the numeric type.
0.57
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.42
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.14
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
12.36
Mean of means among attributes of the numeric type.
-1.28
First quartile of skewness among attributes of the numeric type.
0.44
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.24
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task