Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1641347

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1641347

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1641347 (TID: 103829), and it has 52 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric50 unique values
0 missing
molecule_id (row identifier)nominal52 unique values
0 missing
CATS2D_05_DLnumeric8 unique values
0 missing
nCnumeric17 unique values
0 missing
SpMax7_Bh.m.numeric48 unique values
0 missing
GATS1mnumeric46 unique values
0 missing
CATS2D_03_DLnumeric9 unique values
0 missing
SpMin1_Bh.m.numeric43 unique values
0 missing
ATSC5enumeric51 unique values
0 missing
Eig07_AEA.ri.numeric49 unique values
0 missing
Eig07_EAnumeric44 unique values
0 missing
Eig07_EA.bo.numeric49 unique values
0 missing
Eig07_EA.ed.numeric47 unique values
0 missing
Eig07_EA.ri.numeric49 unique values
0 missing
Eig13_AEA.bo.numeric35 unique values
0 missing
SM02_AEA.ri.numeric47 unique values
0 missing
SM15_AEA.bo.numeric44 unique values
0 missing
BIC1numeric47 unique values
0 missing
SpMax7_Bh.v.numeric50 unique values
0 missing
ATS3vnumeric50 unique values
0 missing
ATS4pnumeric51 unique values
0 missing
ATS4vnumeric51 unique values
0 missing
SpMax8_Bh.m.numeric48 unique values
0 missing
ATS2pnumeric49 unique values
0 missing
ATS4snumeric51 unique values
0 missing
AECCnumeric48 unique values
0 missing
HVcpxnumeric49 unique values
0 missing
ICRnumeric45 unique values
0 missing
IDEnumeric49 unique values
0 missing
MATS1enumeric46 unique values
0 missing
MDDDnumeric49 unique values
0 missing
S1Knumeric49 unique values
0 missing
SpMaxA_EA.ed.numeric46 unique values
0 missing
SpMin1_Bh.v.numeric48 unique values
0 missing
MAXDPnumeric51 unique values
0 missing
SpMax2_Bh.v.numeric49 unique values
0 missing
ATS1snumeric51 unique values
0 missing
SpMin1_Bh.e.numeric47 unique values
0 missing
ALOGPnumeric49 unique values
0 missing
ATS4mnumeric51 unique values
0 missing
GGI7numeric43 unique values
0 missing
Eig07_AEA.bo.numeric47 unique values
0 missing
CATS2D_02_NLnumeric4 unique values
0 missing
Polnumeric31 unique values
0 missing
ON0numeric41 unique values
0 missing
ZM1MulPernumeric51 unique values
0 missing
ZM1Pernumeric51 unique values
0 missing
ZM2Kupnumeric50 unique values
0 missing
ZM2MulPernumeric51 unique values
0 missing
ZM2Pernumeric51 unique values
0 missing
ZM2Vnumeric48 unique values
0 missing
TIEnumeric51 unique values
0 missing
CIC0numeric50 unique values
0 missing
Eig05_EA.bo.numeric46 unique values
0 missing
SM15_AEA.ri.numeric46 unique values
0 missing
SpMax5_Bh.p.numeric48 unique values
0 missing
Eig12_AEA.bo.numeric43 unique values
0 missing
ATS6mnumeric51 unique values
0 missing
nBMnumeric18 unique values
0 missing
Ucnumeric18 unique values
0 missing
Eta_betaPnumeric29 unique values
0 missing
Eig07_AEA.dm.numeric50 unique values
0 missing
X5solnumeric49 unique values
0 missing
DECCnumeric49 unique values
0 missing
Eig05_AEA.ed.numeric47 unique values
0 missing
Eig05_EAnumeric45 unique values
0 missing
Eig05_EA.ed.numeric47 unique values
0 missing
SM13_AEA.bo.numeric45 unique values
0 missing

62 properties

52
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
1.31
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.14
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.02
Mean skewness among attributes of the numeric type.
2.76
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
17.03
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.07
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.93
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.32
Maximum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
501.7
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.22
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
5.05
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.78
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.75
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.87
Third quartile of skewness among attributes of the numeric type.
222.44
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.5
First quartile of kurtosis among attributes of the numeric type.
2.58
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.49
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.57
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
39.81
Mean of means among attributes of the numeric type.
-0.63
First quartile of skewness among attributes of the numeric type.
-0.24
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.45
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task