Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4027

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4027

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4027 (TID: 10685), and it has 220 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric145 unique values
0 missing
molecule_id (row identifier)nominal220 unique values
0 missing
C.043numeric3 unique values
0 missing
piPC06numeric163 unique values
0 missing
SM09_EA.bo.numeric161 unique values
0 missing
SM10_EA.bo.numeric159 unique values
0 missing
piPC07numeric164 unique values
0 missing
piPC08numeric169 unique values
0 missing
piPC10numeric168 unique values
0 missing
SM08_EA.bo.numeric160 unique values
0 missing
CATS2D_04_PLnumeric5 unique values
0 missing
piPC05numeric155 unique values
0 missing
Eig02_EA.bo.numeric96 unique values
0 missing
SM12_AEA.ri.numeric96 unique values
0 missing
piPC09numeric169 unique values
0 missing
PCRnumeric121 unique values
0 missing
piIDnumeric160 unique values
0 missing
PCDnumeric159 unique values
0 missing
SM12_EA.bo.numeric153 unique values
0 missing
SM13_EA.bo.numeric156 unique values
0 missing
nCbHnumeric17 unique values
0 missing
Eig03_EA.bo.numeric91 unique values
0 missing
SM13_AEA.ri.numeric91 unique values
0 missing
NaaaCnumeric7 unique values
0 missing
N.071numeric2 unique values
0 missing
nArNR2numeric2 unique values
0 missing
SM07_EA.bo.numeric155 unique values
0 missing
nR.Csnumeric6 unique values
0 missing
SM11_EA.bo.numeric156 unique values
0 missing
SdsCHnumeric34 unique values
0 missing
NaasNnumeric3 unique values
0 missing
nN.numeric2 unique values
0 missing
SaasNnumeric37 unique values
0 missing
GATS2vnumeric151 unique values
0 missing
SpMin1_Bh.p.numeric74 unique values
0 missing
SpMax3_Bh.s.numeric79 unique values
0 missing
nCconjnumeric5 unique values
0 missing
Psi_e_Anumeric172 unique values
0 missing
Psi_i_Anumeric172 unique values
0 missing
RFDnumeric30 unique values
0 missing
SM14_EA.bo.numeric156 unique values
0 missing
SM15_EA.bo.numeric148 unique values
0 missing
Eig02_AEA.bo.numeric98 unique values
0 missing
RCInumeric30 unique values
0 missing
P_VSA_p_3numeric188 unique values
0 missing
P_VSA_v_3numeric188 unique values
0 missing
SRW07numeric24 unique values
0 missing
SaasCnumeric194 unique values
0 missing
Rbridnumeric8 unique values
0 missing
ARRnumeric113 unique values
0 missing
CATS2D_03_DDnumeric13 unique values
0 missing
CATS2D_03_LLnumeric41 unique values
0 missing
MLOGPnumeric164 unique values
0 missing
BLTA96numeric152 unique values
0 missing
BLTD48numeric153 unique values
0 missing
BLTF96numeric153 unique values
0 missing
Mpnumeric80 unique values
0 missing
SpMAD_EA.bo.numeric133 unique values
0 missing
ALOGPnumeric188 unique values
0 missing
MATS4mnumeric133 unique values
0 missing
P_VSA_LogP_3numeric56 unique values
0 missing
SIC0numeric78 unique values
0 missing
CATS2D_07_AAnumeric5 unique values
0 missing
SpMin1_Bh.v.numeric75 unique values
0 missing
AACnumeric142 unique values
0 missing
AECCnumeric160 unique values
0 missing
ALOGP2numeric189 unique values
0 missing
AMRnumeric190 unique values
0 missing

62 properties

220
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.31
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.38
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.42
Mean skewness among attributes of the numeric type.
3.19
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.34
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.37
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.84
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.04
Second quartile (Median) of standard deviation of attributes of the numeric type.
20.97
Maximum kurtosis among attributes of the numeric type.
-2.78
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
208.56
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.09
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
10.76
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.65
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.39
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1
Third quartile of skewness among attributes of the numeric type.
106.92
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.94
First quartile of kurtosis among attributes of the numeric type.
2.09
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.74
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.52
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.05
Mean of means among attributes of the numeric type.
-0.23
First quartile of skewness among attributes of the numeric type.
-0.69
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.33
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task