Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5457

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5457

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5457 (TID: 100036), and it has 194 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric146 unique values
0 missing
molecule_id (row identifier)nominal194 unique values
0 missing
SpMin1_Bh.e.numeric73 unique values
0 missing
SpMin1_Bh.v.numeric67 unique values
0 missing
SpMin1_Bh.p.numeric55 unique values
0 missing
SpMin1_Bh.i.numeric60 unique values
0 missing
D.Dtr10numeric88 unique values
0 missing
nR10numeric5 unique values
0 missing
nPyridinesnumeric3 unique values
0 missing
C.031numeric2 unique values
0 missing
C.027numeric4 unique values
0 missing
H.049numeric4 unique values
0 missing
N.075numeric4 unique values
0 missing
NaaNnumeric4 unique values
0 missing
CATS2D_04_PLnumeric5 unique values
0 missing
SaaNnumeric174 unique values
0 missing
Eig01_EA.ri.numeric54 unique values
0 missing
SpDiam_EA.ri.numeric54 unique values
0 missing
SpMax_EA.ri.numeric54 unique values
0 missing
C.043numeric2 unique values
0 missing
GATS5pnumeric159 unique values
0 missing
Eig01_AEA.ri.numeric60 unique values
0 missing
SpMax_AEA.ri.numeric60 unique values
0 missing
Eta_betaPnumeric26 unique values
0 missing
SpDiam_AEA.bo.numeric116 unique values
0 missing
NaaOnumeric2 unique values
0 missing
nFuranesnumeric2 unique values
0 missing
SaaOnumeric16 unique values
0 missing
SM15_EA.ed.numeric107 unique values
0 missing
SpMax1_Bh.m.numeric84 unique values
0 missing
SpDiam_AEA.ri.numeric63 unique values
0 missing
GATS2mnumeric122 unique values
0 missing
SM09_EA.ed.numeric112 unique values
0 missing
C.006numeric4 unique values
0 missing
SM07_EA.ed.numeric107 unique values
0 missing
SM08_EA.ed.numeric111 unique values
0 missing
SM14_AEA.ed.numeric115 unique values
0 missing
SM15_AEA.ed.numeric115 unique values
0 missing
JGI3numeric42 unique values
0 missing
SM13_AEA.ed.numeric116 unique values
0 missing
D.Dtr09numeric25 unique values
0 missing
nR09numeric4 unique values
0 missing
SRW07numeric5 unique values
0 missing
SRW09numeric8 unique values
0 missing
N.070numeric2 unique values
0 missing
nArNHRnumeric2 unique values
0 missing
piPC09numeric138 unique values
0 missing
CATS2D_04_DLnumeric11 unique values
0 missing
SM14_EA.ri.numeric161 unique values
0 missing
SM15_EA.ri.numeric145 unique values
0 missing
SM12_AEA.ed.numeric115 unique values
0 missing
piPC06numeric124 unique values
0 missing
piPC07numeric137 unique values
0 missing
Eig01_AEA.bo.numeric42 unique values
0 missing
Eig01_EA.bo.numeric27 unique values
0 missing
SM11_AEA.ri.numeric27 unique values
0 missing
SpDiam_EA.bo.numeric27 unique values
0 missing
SpMax_AEA.bo.numeric42 unique values
0 missing
SpMax_EA.bo.numeric27 unique values
0 missing
MATS1enumeric92 unique values
0 missing
piPC08numeric135 unique values
0 missing
CATS2D_06_DPnumeric2 unique values
0 missing
CATS2D_08_DDnumeric2 unique values
0 missing
CATS2D_08_DPnumeric2 unique values
0 missing

62 properties

194
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
0.59
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.33
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.03
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.29
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
2.61
Mean standard deviation of attributes of the numeric type.
-0.12
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.45
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.92
Minimum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
36.5
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.89
Third quartile of kurtosis among attributes of the numeric type.
87.08
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
7.48
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-1.07
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.7
Third quartile of skewness among attributes of the numeric type.
5.73
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.1
First quartile of kurtosis among attributes of the numeric type.
0.66
Third quartile of standard deviation of attributes of the numeric type.
82
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
0.79
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1.94
Mean kurtosis among attributes of the numeric type.
-0.58
First quartile of skewness among attributes of the numeric type.
7.91
Mean of means among attributes of the numeric type.
0.12
First quartile of standard deviation of attributes of the numeric type.
-0.19
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task