Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2362979

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2362979

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2362979 (TID: 105691), and it has 214 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric19 unique values
0 missing
molecule_id (row identifier)nominal214 unique values
0 missing
SpMin1_Bh.e.numeric143 unique values
0 missing
SpMin1_Bh.p.numeric143 unique values
0 missing
SpMin1_Bh.v.numeric140 unique values
0 missing
Eig01_EA.ri.numeric179 unique values
0 missing
SpMax_EA.ri.numeric179 unique values
0 missing
SpDiam_AEA.bo.numeric184 unique values
0 missing
SpMin1_Bh.i.numeric140 unique values
0 missing
SpDiam_EA.ri.numeric180 unique values
0 missing
MPC07numeric122 unique values
0 missing
MPC08numeric124 unique values
0 missing
DLS_consnumeric24 unique values
0 missing
DLS_04numeric8 unique values
0 missing
AACnumeric177 unique values
0 missing
AECCnumeric195 unique values
0 missing
ALOGPnumeric208 unique values
0 missing
ALOGP2numeric211 unique values
0 missing
AMRnumeric212 unique values
0 missing
AMWnumeric203 unique values
0 missing
ARRnumeric95 unique values
0 missing
ATS1enumeric193 unique values
0 missing
ATS1inumeric184 unique values
0 missing
ATS1mnumeric184 unique values
0 missing
ATS1pnumeric192 unique values
0 missing
ATS1snumeric188 unique values
0 missing
ATS1vnumeric187 unique values
0 missing
ATS2enumeric192 unique values
0 missing
ATS2inumeric196 unique values
0 missing
ATS2mnumeric185 unique values
0 missing
ATS2pnumeric193 unique values
0 missing
ATS2snumeric189 unique values
0 missing
ATS2vnumeric196 unique values
0 missing
ATS3enumeric200 unique values
0 missing
ATS3inumeric201 unique values
0 missing
ATS3mnumeric193 unique values
0 missing
ATS3pnumeric189 unique values
0 missing
ATS3snumeric193 unique values
0 missing
ATS3vnumeric196 unique values
0 missing
ATS4enumeric192 unique values
0 missing
ATS4inumeric198 unique values
0 missing
ATS4mnumeric194 unique values
0 missing
ATS4pnumeric200 unique values
0 missing
ATS4snumeric196 unique values
0 missing
ATS4vnumeric192 unique values
0 missing
ATS5enumeric197 unique values
0 missing
ATS5inumeric204 unique values
0 missing
ATS5mnumeric202 unique values
0 missing
ATS5pnumeric200 unique values
0 missing
ATS5snumeric204 unique values
0 missing
ATS5vnumeric199 unique values
0 missing
ATS6enumeric201 unique values
0 missing
ATS6inumeric198 unique values
0 missing
ATS6mnumeric206 unique values
0 missing
ATS6pnumeric197 unique values
0 missing
ATS6snumeric202 unique values
0 missing
ATS6vnumeric200 unique values
0 missing
ATS7enumeric200 unique values
0 missing
ATS7inumeric201 unique values
0 missing
ATS7mnumeric204 unique values
0 missing
ATS7pnumeric196 unique values
0 missing
ATS7snumeric202 unique values
0 missing
ATS7vnumeric204 unique values
0 missing
ATS8enumeric200 unique values
0 missing
ATS8inumeric197 unique values
0 missing
ATS8mnumeric200 unique values
0 missing
ATS8pnumeric197 unique values
0 missing
ATS8snumeric204 unique values
0 missing
ATS8vnumeric198 unique values
0 missing

62 properties

214
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
98.55
Percentage of numeric attributes.
4.61
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-3.25
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
-0.36
Third quartile of skewness among attributes of the numeric type.
2.48
Maximum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
0.83
First quartile of kurtosis among attributes of the numeric type.
0.73
Third quartile of standard deviation of attributes of the numeric type.
22.13
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
3.32
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.02
Mean kurtosis among attributes of the numeric type.
-1.78
First quartile of skewness among attributes of the numeric type.
5.3
Mean of means among attributes of the numeric type.
0.28
First quartile of standard deviation of attributes of the numeric type.
0.82
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2.39
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.32
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
3.82
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.85
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
0.95
Mean standard deviation of attributes of the numeric type.
-0.58
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.12
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
21.96
Maximum kurtosis among attributes of the numeric type.
0.52
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
6.1
Third quartile of kurtosis among attributes of the numeric type.
90.32
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task