Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2326

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2326

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2326 (TID: 11060), and it has 380 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric299 unique values
0 missing
molecule_id (row identifier)nominal380 unique values
0 missing
S.110numeric3 unique values
0 missing
SpMax1_Bh.m.numeric142 unique values
0 missing
NddssSnumeric3 unique values
0 missing
SddssSnumeric205 unique values
0 missing
SpMax1_Bh.s.numeric60 unique values
0 missing
MAXDNnumeric321 unique values
0 missing
P_VSA_s_1numeric13 unique values
0 missing
Eta_sh_xnumeric107 unique values
0 missing
N.069numeric4 unique values
0 missing
CATS2D_02_APnumeric7 unique values
0 missing
CATS2D_02_DAnumeric8 unique values
0 missing
nSnumeric5 unique values
0 missing
Eig01_EA.bo.numeric159 unique values
0 missing
SM11_AEA.ri.numeric159 unique values
0 missing
SpMax_EA.bo.numeric159 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
SM13_EA.bo.numeric278 unique values
0 missing
SM14_EA.bo.numeric276 unique values
0 missing
SM15_EA.bo.numeric262 unique values
0 missing
SM10_EA.bo.numeric294 unique values
0 missing
SM11_EA.bo.numeric274 unique values
0 missing
SM12_EA.bo.numeric274 unique values
0 missing
SM09_EA.bo.numeric280 unique values
0 missing
SpDiam_AEA.dm.numeric171 unique values
0 missing
P_VSA_i_1numeric28 unique values
0 missing
Eig01_AEA.dm.numeric164 unique values
0 missing
SpMax_AEA.dm.numeric164 unique values
0 missing
CATS2D_00_DDnumeric4 unique values
0 missing
CATS2D_00_DPnumeric4 unique values
0 missing
CATS2D_00_PPnumeric4 unique values
0 missing
NsNH2numeric4 unique values
0 missing
SsNH2numeric205 unique values
0 missing
P_VSA_e_3numeric73 unique values
0 missing
P_VSA_i_4numeric83 unique values
0 missing
nHMnumeric6 unique values
0 missing
P_VSA_m_4numeric37 unique values
0 missing
Eig01_AEA.bo.numeric169 unique values
0 missing
SpMax_AEA.bo.numeric169 unique values
0 missing
SM08_EA.bo.numeric296 unique values
0 missing
SM05_EA.bo.numeric242 unique values
0 missing
N.numeric92 unique values
0 missing
Eig01_AEA.ed.numeric172 unique values
0 missing
SpMax_AEA.ed.numeric172 unique values
0 missing
BLInumeric276 unique values
0 missing
X1Avnumeric173 unique values
0 missing
ATSC2snumeric368 unique values
0 missing
Eig01_EAnumeric177 unique values
0 missing
SM09_AEA.bo.numeric177 unique values
0 missing
SpMax_EAnumeric177 unique values
0 missing
nNnumeric8 unique values
0 missing
SpMax1_Bh.p.numeric161 unique values
0 missing
Eig01_EA.ed.numeric198 unique values
0 missing
SM10_AEA.dm.numeric198 unique values
0 missing
SpMax_EA.ed.numeric198 unique values
0 missing
SM06_EA.bo.numeric300 unique values
0 missing
O.058numeric6 unique values
0 missing
GATS1enumeric227 unique values
0 missing
SM15_AEA.ed.numeric281 unique values
0 missing
SdOnumeric345 unique values
0 missing
SM14_AEA.ed.numeric280 unique values
0 missing
SM13_EA.ed.numeric270 unique values
0 missing
SM14_EA.ed.numeric271 unique values
0 missing
SM15_EA.ed.numeric261 unique values
0 missing
SpMax2_Bh.s.numeric95 unique values
0 missing
SpDiam_EA.bo.numeric164 unique values
0 missing
SM09_EA.ed.numeric275 unique values
0 missing
SM10_EA.ed.numeric283 unique values
0 missing
NdOnumeric6 unique values
0 missing
SM11_EA.ed.numeric276 unique values
0 missing

62 properties

380
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
98.59
Percentage of numeric attributes.
16.67
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-5.5
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
0.38
Third quartile of skewness among attributes of the numeric type.
3.92
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
-0.07
First quartile of kurtosis among attributes of the numeric type.
2.37
Third quartile of standard deviation of attributes of the numeric type.
44.63
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
1.94
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
8.4
Mean kurtosis among attributes of the numeric type.
-2.68
First quartile of skewness among attributes of the numeric type.
10.89
Mean of means among attributes of the numeric type.
0.6
First quartile of standard deviation of attributes of the numeric type.
-0.02
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
3.31
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.19
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
5
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-1.34
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
3.7
Mean standard deviation of attributes of the numeric type.
-0.98
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
1.14
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.9
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
36.9
Maximum kurtosis among attributes of the numeric type.
-2.77
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
10.94
Third quartile of kurtosis among attributes of the numeric type.
71.95
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task