Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741179

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741179

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1741179 (TID: 103975), and it has 826 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric336 unique values
0 missing
molecule_id (row identifier)nominal826 unique values
0 missing
NsSHnumeric3 unique values
0 missing
S.106numeric3 unique values
0 missing
SsSHnumeric155 unique values
0 missing
nN.numeric2 unique values
0 missing
MATS1mnumeric266 unique values
0 missing
nSnumeric5 unique values
0 missing
CATS2D_02_PLnumeric6 unique values
0 missing
nTriazolesnumeric2 unique values
0 missing
nHMnumeric5 unique values
0 missing
C.044numeric4 unique values
0 missing
SaaNnumeric378 unique values
0 missing
NaaNnumeric6 unique values
0 missing
N.075numeric6 unique values
0 missing
N.079numeric2 unique values
0 missing
SpMin3_Bh.m.numeric448 unique values
0 missing
AMWnumeric687 unique values
0 missing
SpMin5_Bh.m.numeric460 unique values
0 missing
ATSC1mnumeric754 unique values
0 missing
GATS1inumeric506 unique values
0 missing
CATS2D_01_AAnumeric6 unique values
0 missing
P_VSA_MR_7numeric161 unique values
0 missing
nNqnumeric2 unique values
0 missing
NssssN.numeric2 unique values
0 missing
SssssN.numeric57 unique values
0 missing
ATS5inumeric657 unique values
0 missing
O.058numeric6 unique values
0 missing
ATSC6vnumeric803 unique values
0 missing
CATS2D_03_PLnumeric6 unique values
0 missing
TPSA.Tot.numeric515 unique values
0 missing
SpMin8_Bh.m.numeric484 unique values
0 missing
ATS5enumeric647 unique values
0 missing
P_VSA_LogP_7numeric162 unique values
0 missing
SpMin7_Bh.m.numeric463 unique values
0 missing
H.numeric228 unique values
0 missing
SpMin6_Bh.s.numeric407 unique values
0 missing
NdssCnumeric9 unique values
0 missing
SpMAD_AEA.dm.numeric264 unique values
0 missing
SM03_EA.dm.numeric95 unique values
0 missing
SM05_EA.dm.numeric188 unique values
0 missing
SM07_EA.dm.numeric204 unique values
0 missing
SM09_EA.dm.numeric197 unique values
0 missing
SM11_EA.dm.numeric190 unique values
0 missing
SM13_EA.dm.numeric186 unique values
0 missing
SM15_EA.dm.numeric185 unique values
0 missing
SpMax7_Bh.i.numeric486 unique values
0 missing
SpMin4_Bh.v.numeric452 unique values
0 missing
SpMin3_Bh.v.numeric424 unique values
0 missing
CATS2D_02_DAnumeric6 unique values
0 missing
ATSC7vnumeric807 unique values
0 missing
ATSC1pnumeric708 unique values
0 missing
BIC0numeric207 unique values
0 missing
Eig03_EA.dm.numeric144 unique values
0 missing
P_VSA_LogP_2numeric327 unique values
0 missing
ATS7inumeric686 unique values
0 missing
ATS6enumeric674 unique values
0 missing
ATSC4pnumeric792 unique values
0 missing
P_VSA_i_1numeric39 unique values
0 missing
ATSC4mnumeric816 unique values
0 missing
NssNHnumeric5 unique values
0 missing
SssNHnumeric289 unique values
0 missing
C.006numeric10 unique values
0 missing
C.040numeric6 unique values
0 missing
Eta_epsi_Anumeric238 unique values
0 missing
SpMin1_Bh.p.numeric239 unique values
0 missing
ATS7enumeric677 unique values
0 missing
P_VSA_e_1numeric59 unique values
0 missing
P_VSA_m_1numeric57 unique values
0 missing
P_VSA_v_1numeric57 unique values
0 missing
ATS8inumeric684 unique values
0 missing
Eig02_EA.dm.numeric161 unique values
0 missing

62 properties

826
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
10.84
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
1.86
Third quartile of kurtosis among attributes of the numeric type.
213.15
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.72
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.78
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
1.21
Third quartile of skewness among attributes of the numeric type.
3.51
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.68
Third quartile of standard deviation of attributes of the numeric type.
83.3
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.16
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.61
First quartile of means among attributes of the numeric type.
1.29
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.67
Mean of means among attributes of the numeric type.
0.31
First quartile of skewness among attributes of the numeric type.
0.33
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.34
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.09
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.69
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.66
Mean skewness among attributes of the numeric type.
1.58
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
7.56
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.62
Second quartile (Median) of skewness among attributes of the numeric type.
0.87
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.68
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task