Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4896

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4896

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4896 (TID: 100411), and it has 581 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric22 unique values
0 missing
molecule_id (row identifier)nominal581 unique values
0 missing
AACnumeric338 unique values
0 missing
AECCnumeric440 unique values
0 missing
ALOGPnumeric529 unique values
0 missing
ALOGP2numeric559 unique values
0 missing
AMRnumeric561 unique values
0 missing
AMWnumeric468 unique values
0 missing
ARRnumeric161 unique values
0 missing
ATS1enumeric410 unique values
0 missing
ATS1inumeric404 unique values
0 missing
ATS1mnumeric397 unique values
0 missing
ATS1pnumeric390 unique values
0 missing
ATS1snumeric413 unique values
0 missing
ATS1vnumeric393 unique values
0 missing
ATS2enumeric421 unique values
0 missing
ATS2inumeric427 unique values
0 missing
ATS2mnumeric414 unique values
0 missing
ATS2pnumeric412 unique values
0 missing
ATS2snumeric452 unique values
0 missing
ATS2vnumeric401 unique values
0 missing
ATS3enumeric429 unique values
0 missing
ATS3inumeric438 unique values
0 missing
ATS3mnumeric426 unique values
0 missing
ATS3pnumeric418 unique values
0 missing
ATS3snumeric444 unique values
0 missing
ATS3vnumeric419 unique values
0 missing
ATS4enumeric456 unique values
0 missing
ATS4inumeric445 unique values
0 missing
ATS4mnumeric455 unique values
0 missing
ATS4pnumeric451 unique values
0 missing
ATS4snumeric452 unique values
0 missing
ATS4vnumeric453 unique values
0 missing
ATS5enumeric457 unique values
0 missing
ATS5inumeric465 unique values
0 missing
ATS5mnumeric460 unique values
0 missing
ATS5pnumeric463 unique values
0 missing
ATS5snumeric476 unique values
0 missing
ATS5vnumeric463 unique values
0 missing
ATS6enumeric478 unique values
0 missing
ATS6inumeric486 unique values
0 missing
ATS6mnumeric460 unique values
0 missing
ATS6pnumeric468 unique values
0 missing
ATS6snumeric472 unique values
0 missing
ATS6vnumeric473 unique values
0 missing
ATS7enumeric484 unique values
0 missing
ATS7inumeric494 unique values
0 missing
ATS7mnumeric478 unique values
0 missing
ATS7pnumeric483 unique values
0 missing
ATS7snumeric489 unique values
0 missing
ATS7vnumeric484 unique values
0 missing
ATS8enumeric507 unique values
0 missing
ATS8inumeric505 unique values
0 missing
ATS8mnumeric478 unique values
0 missing
ATS8pnumeric498 unique values
0 missing
ATS8snumeric495 unique values
0 missing
ATS8vnumeric498 unique values
0 missing
ATSC1enumeric198 unique values
0 missing
ATSC1inumeric373 unique values
0 missing
ATSC1mnumeric539 unique values
0 missing
ATSC1pnumeric518 unique values
0 missing
ATSC1snumeric559 unique values
0 missing
ATSC1vnumeric520 unique values
0 missing
ATSC2enumeric352 unique values
0 missing
ATSC2inumeric438 unique values
0 missing
ATSC2mnumeric546 unique values
0 missing
ATSC2pnumeric534 unique values
0 missing
ATSC2snumeric576 unique values
0 missing
ATSC2vnumeric546 unique values
0 missing
ATSC3enumeric376 unique values
0 missing

62 properties

581
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
22.39
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
6.41
Third quartile of kurtosis among attributes of the numeric type.
102.61
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.26
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-3.01
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
0.27
Third quartile of skewness among attributes of the numeric type.
3.42
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.62
Third quartile of standard deviation of attributes of the numeric type.
36.23
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.24
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.65
First quartile of means among attributes of the numeric type.
3.56
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.47
Mean of means among attributes of the numeric type.
-1.25
First quartile of skewness among attributes of the numeric type.
0.77
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.12
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.68
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.34
Mean skewness among attributes of the numeric type.
4
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.71
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.38
Second quartile (Median) of skewness among attributes of the numeric type.
0.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.24
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task