Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2873

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2873

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2873 (TID: 11873), and it has 115 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric44 unique values
0 missing
molecule_id (row identifier)nominal115 unique values
0 missing
NNRSnumeric12 unique values
0 missing
RCInumeric27 unique values
0 missing
RFDnumeric27 unique values
0 missing
X4Anumeric33 unique values
0 missing
X5Anumeric27 unique values
0 missing
Eig01_EA.ri.numeric92 unique values
0 missing
Eig02_EA.ed.numeric100 unique values
0 missing
SM11_AEA.dm.numeric100 unique values
0 missing
SM15_EA.ri.numeric105 unique values
0 missing
SpDiam_EA.ri.numeric92 unique values
0 missing
SpMax_EA.ri.numeric92 unique values
0 missing
SM11_EA.ri.numeric104 unique values
0 missing
SM12_EA.ri.numeric103 unique values
0 missing
SM13_EA.ri.numeric104 unique values
0 missing
SM14_EA.ri.numeric103 unique values
0 missing
SaaaCnumeric70 unique values
0 missing
Eig01_AEA.ed.numeric90 unique values
0 missing
Eig02_AEA.ed.numeric94 unique values
0 missing
Eig02_EAnumeric97 unique values
0 missing
Eig03_EA.ri.numeric100 unique values
0 missing
Polnumeric48 unique values
0 missing
SM03_EA.ed.numeric98 unique values
0 missing
SM03_EA.ri.numeric100 unique values
0 missing
SM04_EA.ri.numeric102 unique values
0 missing
SM05_EA.ed.numeric101 unique values
0 missing
SM05_EA.ri.numeric101 unique values
0 missing
SM06_EA.ed.numeric106 unique values
0 missing
SM06_EA.ri.numeric101 unique values
0 missing
SM07_EA.ed.numeric104 unique values
0 missing
SM07_EA.ri.numeric101 unique values
0 missing
SM08_AEA.ed.numeric101 unique values
0 missing
SM08_EAnumeric102 unique values
0 missing
SM08_EA.ed.numeric100 unique values
0 missing
SM08_EA.ri.numeric103 unique values
0 missing
SM09_AEA.ed.numeric104 unique values
0 missing
SM09_EAnumeric101 unique values
0 missing
SM10_AEA.bo.numeric97 unique values
0 missing
SM10_EAnumeric106 unique values
0 missing
SM11_EAnumeric98 unique values
0 missing
SM12_EAnumeric104 unique values
0 missing
SM13_AEA.ed.numeric103 unique values
0 missing
SM13_EAnumeric102 unique values
0 missing
SM14_EAnumeric103 unique values
0 missing
SM15_EAnumeric104 unique values
0 missing
SpDiam_AEA.ed.numeric102 unique values
0 missing
SpMax_AEA.ed.numeric90 unique values
0 missing
SpMAD_AEA.ed.numeric82 unique values
0 missing
Eig01_AEA.ri.numeric93 unique values
0 missing
SM09_EA.ri.numeric104 unique values
0 missing
SM10_EA.ri.numeric104 unique values
0 missing
SpDiam_AEA.ri.numeric101 unique values
0 missing
SpMax_AEA.ri.numeric93 unique values
0 missing
SM03_EAnumeric20 unique values
0 missing
SM05_EAnumeric64 unique values
0 missing
SM07_EAnumeric99 unique values
0 missing
CATS2D_06_DLnumeric12 unique values
0 missing
C.025numeric9 unique values
0 missing
nR09numeric6 unique values
0 missing
piPC05numeric100 unique values
0 missing
piPC06numeric103 unique values
0 missing
piPC07numeric101 unique values
0 missing
piPC08numeric105 unique values
0 missing
piPC09numeric107 unique values
0 missing
piPC10numeric109 unique values
0 missing
SM09_EA.bo.numeric102 unique values
0 missing
SM10_EA.bo.numeric104 unique values
0 missing

62 properties

115
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
2.77
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.92
Third quartile of kurtosis among attributes of the numeric type.
54.8
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
14.11
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.04
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
1.08
Third quartile of skewness among attributes of the numeric type.
1.82
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.9
Third quartile of standard deviation of attributes of the numeric type.
17.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.14
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
4.29
First quartile of means among attributes of the numeric type.
0.54
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.63
Mean of means among attributes of the numeric type.
0.75
First quartile of skewness among attributes of the numeric type.
0.2
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.34
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.59
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.38
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.88
Mean skewness among attributes of the numeric type.
7.91
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.97
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.97
Second quartile (Median) of skewness among attributes of the numeric type.
0.64
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.4
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task