Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4471

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4471

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4471 (TID: 10403), and it has 935 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric529 unique values
0 missing
molecule_id (row identifier)nominal935 unique values
0 missing
nRCONR2numeric4 unique values
0 missing
CATS2D_02_DDnumeric4 unique values
0 missing
ATS8pnumeric684 unique values
0 missing
SpMin2_Bh.s.numeric366 unique values
0 missing
CATS2D_09_DAnumeric19 unique values
0 missing
CATS2D_07_DDnumeric8 unique values
0 missing
SsssCHnumeric477 unique values
0 missing
CATS2D_04_PLnumeric7 unique values
0 missing
SpMax5_Bh.v.numeric482 unique values
0 missing
ATSC7snumeric887 unique values
0 missing
CATS2D_07_DPnumeric5 unique values
0 missing
ATS7mnumeric685 unique values
0 missing
SpMax6_Bh.v.numeric486 unique values
0 missing
SpMin4_Bh.v.numeric376 unique values
0 missing
CATS2D_08_DAnumeric18 unique values
0 missing
GATS1mnumeric373 unique values
0 missing
CATS2D_05_AAnumeric15 unique values
0 missing
NsssCHnumeric11 unique values
0 missing
C.008numeric10 unique values
0 missing
SpMax5_Bh.e.numeric454 unique values
0 missing
N.067numeric3 unique values
0 missing
SpMin5_Bh.s.numeric441 unique values
0 missing
MAXDNnumeric673 unique values
0 missing
SpMax5_Bh.i.numeric451 unique values
0 missing
SpDiam_AEA.bo.numeric424 unique values
0 missing
SdOnumeric794 unique values
0 missing
ATS4snumeric617 unique values
0 missing
SpMin6_Bh.v.numeric434 unique values
0 missing
SpMin4_Bh.p.numeric386 unique values
0 missing
S1Knumeric662 unique values
0 missing
ATSC1snumeric839 unique values
0 missing
S2Knumeric716 unique values
0 missing
Eig01_AEA.ed.numeric361 unique values
0 missing
SpMax_AEA.ed.numeric361 unique values
0 missing
Eig03_EA.ri.numeric474 unique values
0 missing
P_VSA_LogP_7numeric151 unique values
0 missing
Eig01_EA.ed.numeric440 unique values
0 missing
SM10_AEA.dm.numeric440 unique values
0 missing
SpMax_EA.ed.numeric440 unique values
0 missing
SM15_AEA.ed.numeric616 unique values
0 missing
ATSC2snumeric872 unique values
0 missing
SpMin5_Bh.i.numeric455 unique values
0 missing
Eig01_EAnumeric353 unique values
0 missing
SM09_AEA.bo.numeric353 unique values
0 missing
SpDiam_EAnumeric353 unique values
0 missing
SpMax_EAnumeric353 unique values
0 missing
ATSC5enumeric663 unique values
0 missing
SM15_EA.ed.numeric602 unique values
0 missing
SM05_EAnumeric137 unique values
0 missing
SM14_AEA.ed.numeric621 unique values
0 missing
SpMin6_Bh.i.numeric463 unique values
0 missing
Eig03_AEA.ri.numeric468 unique values
0 missing
SM14_EA.ed.numeric613 unique values
0 missing
SM13_EA.ed.numeric603 unique values
0 missing
SpMin1_Bh.s.numeric322 unique values
0 missing
GATS1pnumeric485 unique values
0 missing
SM11_EA.ed.numeric629 unique values
0 missing
Eta_Bnumeric360 unique values
0 missing
SpMin6_Bh.m.numeric391 unique values
0 missing
SM12_EA.ed.numeric606 unique values
0 missing
ATSC3snumeric873 unique values
0 missing
SpDiam_EA.ed.numeric525 unique values
0 missing
SpMax8_Bh.p.numeric461 unique values
0 missing
SM03_EA.ed.numeric374 unique values
0 missing
ATSC6snumeric887 unique values
0 missing
X0numeric418 unique values
0 missing
SM13_AEA.ed.numeric617 unique values
0 missing
SM07_EAnumeric486 unique values
0 missing
SM08_EAnumeric584 unique values
0 missing
SM12_AEA.ed.numeric615 unique values
0 missing

62 properties

935
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
39.64
Maximum kurtosis among attributes of the numeric type.
-1.17
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
10.25
Third quartile of kurtosis among attributes of the numeric type.
285.5
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
23.94
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-5.99
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
0.91
Third quartile of skewness among attributes of the numeric type.
5.42
Maximum skewness among attributes of the numeric type.
0.12
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.72
Third quartile of standard deviation of attributes of the numeric type.
173.98
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.38
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.46
First quartile of means among attributes of the numeric type.
7.51
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
18.34
Mean of means among attributes of the numeric type.
-0.71
First quartile of skewness among attributes of the numeric type.
0.02
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.08
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.93
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.6
Mean skewness among attributes of the numeric type.
3.71
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
10.82
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.45
Second quartile (Median) of skewness among attributes of the numeric type.
0.64
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.6
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task