Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3190

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3190

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3190 (TID: 12615), and it has 125 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric96 unique values
0 missing
molecule_id (row identifier)nominal125 unique values
0 missing
GATS4enumeric112 unique values
0 missing
GATS4snumeric113 unique values
0 missing
CATS2D_08_NLnumeric5 unique values
0 missing
MATS4enumeric101 unique values
0 missing
CATS2D_09_ALnumeric10 unique values
0 missing
ATSC1snumeric112 unique values
0 missing
StNnumeric40 unique values
0 missing
ATSC4snumeric118 unique values
0 missing
ATSC4enumeric107 unique values
0 missing
GATS2inumeric98 unique values
0 missing
ATSC1enumeric78 unique values
0 missing
ATSC2enumeric92 unique values
0 missing
ATSC3snumeric118 unique values
0 missing
StsCnumeric39 unique values
0 missing
nArCOOHnumeric2 unique values
0 missing
GGI4numeric65 unique values
0 missing
GATS2snumeric99 unique values
0 missing
CATS2D_02_DAnumeric6 unique values
0 missing
nArCNnumeric3 unique values
0 missing
nCspnumeric3 unique values
0 missing
nTBnumeric3 unique values
0 missing
NtNnumeric3 unique values
0 missing
NtsCnumeric3 unique values
0 missing
Eig01_EA.ri.numeric65 unique values
0 missing
SpMax_EA.ri.numeric65 unique values
0 missing
NaasCnumeric9 unique values
0 missing
CATS2D_05_NLnumeric5 unique values
0 missing
GATS2vnumeric95 unique values
0 missing
PW5numeric48 unique values
0 missing
CATS2D_03_NLnumeric4 unique values
0 missing
CATS2D_04_NLnumeric4 unique values
0 missing
P_VSA_LogP_5numeric56 unique values
0 missing
MATS4inumeric102 unique values
0 missing
piPC08numeric82 unique values
0 missing
GATS3snumeric105 unique values
0 missing
SpMAD_AEA.bo.numeric73 unique values
0 missing
BIC3numeric76 unique values
0 missing
piPC06numeric86 unique values
0 missing
MATS1snumeric84 unique values
0 missing
MPC06numeric60 unique values
0 missing
MWC08numeric84 unique values
0 missing
Eig04_AEA.ed.numeric70 unique values
0 missing
Eig04_EA.ed.numeric79 unique values
0 missing
SM13_AEA.dm.numeric79 unique values
0 missing
C.025numeric7 unique values
0 missing
piPC07numeric83 unique values
0 missing
piPC09numeric81 unique values
0 missing
ATSC2snumeric118 unique values
0 missing
PW4numeric59 unique values
0 missing
SM08_EA.ri.numeric116 unique values
0 missing
CATS2D_07_NLnumeric4 unique values
0 missing
MAXDNnumeric105 unique values
0 missing
SM15_EA.ri.numeric114 unique values
0 missing
SpDiam_EA.ri.numeric68 unique values
0 missing
MWC07numeric81 unique values
0 missing
SpMAD_AEA.dm.numeric92 unique values
0 missing
SM11_EA.ri.numeric116 unique values
0 missing
SM12_EA.ri.numeric113 unique values
0 missing
SM13_EA.ri.numeric110 unique values
0 missing
SM14_EA.ri.numeric113 unique values
0 missing
GATS3enumeric106 unique values
0 missing
ATSC3enumeric99 unique values
0 missing
Eig07_AEA.dm.numeric87 unique values
0 missing
SM09_EA.ri.numeric112 unique values
0 missing
JGI3numeric35 unique values
0 missing

62 properties

125
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
10.81
Maximum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.59
Third quartile of kurtosis among attributes of the numeric type.
82.77
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.82
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.59
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
0.92
Third quartile of skewness among attributes of the numeric type.
2.74
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.17
Third quartile of standard deviation of attributes of the numeric type.
45.36
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.94
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.44
First quartile of means among attributes of the numeric type.
0.4
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.03
Mean of means among attributes of the numeric type.
-0.74
First quartile of skewness among attributes of the numeric type.
0.12
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.54
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.05
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.16
Mean skewness among attributes of the numeric type.
1.57
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.9
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.18
Second quartile (Median) of skewness among attributes of the numeric type.
0.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.59
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task