Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3094

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3094

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3094 (TID: 11105), and it has 631 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric51 unique values
0 missing
molecule_id (row identifier)nominal631 unique values
0 missing
Chi1_EA.dm.numeric551 unique values
0 missing
Chi0_EA.dm.numeric542 unique values
0 missing
SsssNnumeric153 unique values
0 missing
Eig04_EA.dm.numeric47 unique values
0 missing
Eig03_EA.dm.numeric59 unique values
0 missing
CATS2D_02_ALnumeric15 unique values
0 missing
ATSC3mnumeric610 unique values
0 missing
NsssNnumeric5 unique values
0 missing
MATS1inumeric349 unique values
0 missing
P_VSA_i_3numeric370 unique values
0 missing
P_VSA_LogP_7numeric98 unique values
0 missing
C.006numeric10 unique values
0 missing
MATS1vnumeric163 unique values
0 missing
GATS1inumeric403 unique values
0 missing
ATSC2mnumeric589 unique values
0 missing
MATS1pnumeric256 unique values
0 missing
ATS2enumeric442 unique values
0 missing
SpMin6_Bh.m.numeric347 unique values
0 missing
SpMax8_Bh.m.numeric360 unique values
0 missing
P_VSA_e_1numeric39 unique values
0 missing
P_VSA_m_1numeric39 unique values
0 missing
P_VSA_s_2numeric61 unique values
0 missing
P_VSA_v_1numeric39 unique values
0 missing
Eig05_EA.dm.numeric22 unique values
0 missing
ATS5inumeric486 unique values
0 missing
ATSC4pnumeric607 unique values
0 missing
ATSC1mnumeric579 unique values
0 missing
SpMin7_Bh.v.numeric359 unique values
0 missing
ATSC5vnumeric608 unique values
0 missing
ATS3enumeric451 unique values
0 missing
SssOnumeric214 unique values
0 missing
CATS2D_04_AAnumeric7 unique values
0 missing
P_VSA_MR_1numeric86 unique values
0 missing
P_VSA_p_1numeric101 unique values
0 missing
ON1Vnumeric533 unique values
0 missing
ATS2inumeric452 unique values
0 missing
Eig07_AEA.dm.numeric451 unique values
0 missing
Eta_betaP_Anumeric239 unique values
0 missing
NssCH2numeric12 unique values
0 missing
N.068numeric3 unique values
0 missing
ON0Vnumeric473 unique values
0 missing
Eig10_AEA.dm.numeric411 unique values
0 missing
ATS8mnumeric504 unique values
0 missing
SpMin5_Bh.s.numeric361 unique values
0 missing
SpMin8_Bh.m.numeric344 unique values
0 missing
SpMin8_Bh.s.numeric284 unique values
0 missing
Chi1_EA.bo.numeric560 unique values
0 missing
ATS3inumeric450 unique values
0 missing
SssCH2numeric382 unique values
0 missing
CENTnumeric497 unique values
0 missing
SpMin8_Bh.v.numeric351 unique values
0 missing
MPC10numeric253 unique values
0 missing
Eta_epsinumeric498 unique values
0 missing
DLS_02numeric5 unique values
0 missing
Sinumeric564 unique values
0 missing
SpMin7_Bh.m.numeric356 unique values
0 missing
ATSC7mnumeric620 unique values
0 missing
S1Knumeric504 unique values
0 missing
H.047numeric29 unique values
0 missing
Eig12_AEA.dm.numeric405 unique values
0 missing
ATS5enumeric486 unique values
0 missing
ATS4enumeric486 unique values
0 missing
MPC09numeric237 unique values
0 missing
ATS3mnumeric448 unique values
0 missing
IDMnumeric488 unique values
0 missing
ATSC1vnumeric561 unique values
0 missing
ATS4inumeric476 unique values
0 missing
ATS1enumeric426 unique values
0 missing
ATS1inumeric428 unique values
0 missing

62 properties

631
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
8.94
Maximum kurtosis among attributes of the numeric type.
-0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
2.17
Third quartile of kurtosis among attributes of the numeric type.
1360.63
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
12.7
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.24
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
0.79
Third quartile of skewness among attributes of the numeric type.
3.06
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.72
Third quartile of standard deviation of attributes of the numeric type.
824.69
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.26
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.15
First quartile of means among attributes of the numeric type.
1.45
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
47.56
Mean of means among attributes of the numeric type.
-0.33
First quartile of skewness among attributes of the numeric type.
0.77
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.11
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.73
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.31
Mean skewness among attributes of the numeric type.
4.63
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
21.83
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.37
Second quartile (Median) of skewness among attributes of the numeric type.
0.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.66
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task