Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL206

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL206

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL206 (TID: 19), and it has 2360 rows and 71 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

73 features

pXC50 (target)numeric1244 unique values
0 missing
molecule_id (row identifier)nominal2360 unique values
0 missing
nArOHnumeric6 unique values
0 missing
O.057numeric6 unique values
0 missing
CATS2D_07_LLnumeric44 unique values
0 missing
nRNR2numeric3 unique values
0 missing
N.072numeric6 unique values
0 missing
ATS6pnumeric1275 unique values
0 missing
NsOHnumeric9 unique values
0 missing
ATSC7pnumeric2032 unique values
0 missing
ATS6vnumeric1246 unique values
0 missing
ATSC7vnumeric2068 unique values
0 missing
SpMin3_Bh.m.numeric600 unique values
0 missing
ATSC5pnumeric2056 unique values
0 missing
ATSC1pnumeric1519 unique values
0 missing
CATS2D_02_DAnumeric8 unique values
0 missing
CATS2D_04_AAnumeric10 unique values
0 missing
N.068numeric3 unique values
0 missing
ATS5pnumeric1230 unique values
0 missing
NssNHnumeric6 unique values
0 missing
P_VSA_e_5numeric217 unique values
0 missing
ATS5vnumeric1189 unique values
0 missing
ATS4pnumeric1151 unique values
0 missing
ATSC6pnumeric2058 unique values
0 missing
SsOHnumeric1304 unique values
0 missing
CMC.80numeric2 unique values
0 missing
ATSC7inumeric1363 unique values
0 missing
CATS2D_04_LLnumeric54 unique values
0 missing
Neoplastic.80numeric2 unique values
0 missing
ATS4vnumeric1105 unique values
0 missing
SpMin4_Bh.v.numeric723 unique values
0 missing
Infective.80numeric2 unique values
0 missing
NdOnumeric8 unique values
0 missing
SpMax4_Bh.p.numeric821 unique values
0 missing
O.058numeric8 unique values
0 missing
ATSC5mnumeric2137 unique values
0 missing
Hypertens.80numeric2 unique values
0 missing
SpMin3_Bh.i.numeric602 unique values
0 missing
ATS6inumeric1336 unique values
0 missing
Eig12_EA.ri.numeric1117 unique values
0 missing
ATSC5inumeric1389 unique values
0 missing
CATS2D_07_AAnumeric10 unique values
0 missing
ATS6enumeric1288 unique values
0 missing
P_VSA_m_3numeric318 unique values
0 missing
ATSC6inumeric1368 unique values
0 missing
ATSC4inumeric1315 unique values
0 missing
SM14_EA.dm.numeric466 unique values
0 missing
Eig12_EAnumeric963 unique values
0 missing
SM06_AEA.dm.numeric963 unique values
0 missing
LLS_02numeric7 unique values
0 missing
P_VSA_MR_7numeric240 unique values
0 missing
MATS1vnumeric220 unique values
0 missing
CATS2D_02_DLnumeric13 unique values
0 missing
ATSC4mnumeric2123 unique values
0 missing
Chi0_EA.ed.numeric1549 unique values
0 missing
P_VSA_i_2numeric1829 unique values
0 missing
nR06numeric10 unique values
0 missing
SM12_EA.dm.numeric498 unique values
0 missing
VvdwMGnumeric1454 unique values
0 missing
Vxnumeric1454 unique values
0 missing
SM10_EA.dm.numeric539 unique values
0 missing
C.024numeric20 unique values
0 missing
NdssCnumeric10 unique values
0 missing
SIC3numeric273 unique values
0 missing
C.033numeric5 unique values
0 missing
nPyrrolidinesnumeric3 unique values
0 missing
nCarnumeric30 unique values
0 missing
P_VSA_s_5numeric46 unique values
0 missing
H.048numeric8 unique values
0 missing
CATS2D_03_LLnumeric56 unique values
0 missing
SAdonnumeric74 unique values
0 missing
ATSC8vnumeric2068 unique values
0 missing
CATS2D_06_LLnumeric52 unique values
0 missing

62 properties

2360
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
217.82
Maximum kurtosis among attributes of the numeric type.
0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
24.99
Third quartile of kurtosis among attributes of the numeric type.
457.45
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
10.53
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.63
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.37
Minimum skewness among attributes of the numeric type.
1.37
Percentage of nominal attributes.
3.2
Third quartile of skewness among attributes of the numeric type.
9.39
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
6.53
Third quartile of standard deviation of attributes of the numeric type.
144.95
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.01
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.72
First quartile of means among attributes of the numeric type.
25.41
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
18.6
Mean of means among attributes of the numeric type.
-0.05
First quartile of skewness among attributes of the numeric type.
-0.06
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.5
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.03
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
3.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2.03
Mean skewness among attributes of the numeric type.
3.56
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
8.64
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.56
Second quartile (Median) of skewness among attributes of the numeric type.
1.02
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task