Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4188

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4188

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4188 (TID: 100063), and it has 149 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric85 unique values
0 missing
molecule_id (row identifier)nominal149 unique values
0 missing
P_VSA_s_6numeric53 unique values
0 missing
SIC5numeric80 unique values
0 missing
ATSC2mnumeric113 unique values
0 missing
GATS1vnumeric95 unique values
0 missing
SPInumeric108 unique values
0 missing
JGI3numeric41 unique values
0 missing
Eig02_EA.dm.numeric37 unique values
0 missing
Eig05_AEA.dm.numeric88 unique values
0 missing
BACnumeric58 unique values
0 missing
TPSA.Tot.numeric54 unique values
0 missing
nRCONR2numeric3 unique values
0 missing
MATS4mnumeric103 unique values
0 missing
nHAccnumeric15 unique values
0 missing
GGI3numeric72 unique values
0 missing
SpMax4_Bh.s.numeric80 unique values
0 missing
MATS2vnumeric85 unique values
0 missing
ATSC7enumeric122 unique values
0 missing
Eig04_EA.dm.numeric28 unique values
0 missing
Eig05_EA.dm.numeric23 unique values
0 missing
SM13_EA.ri.numeric119 unique values
0 missing
SM14_EA.ri.numeric118 unique values
0 missing
SM15_EA.ri.numeric120 unique values
0 missing
TIEnumeric125 unique values
0 missing
Eig04_AEA.dm.numeric96 unique values
0 missing
C.007numeric2 unique values
0 missing
MATS1vnumeric63 unique values
0 missing
nAziridinesnumeric3 unique values
0 missing
SRW05numeric8 unique values
0 missing
SRW07numeric13 unique values
0 missing
P_VSA_m_3numeric33 unique values
0 missing
SM03_EA.ri.numeric80 unique values
0 missing
SRW09numeric18 unique values
0 missing
ATSC5enumeric118 unique values
0 missing
Eig03_EA.dm.numeric28 unique values
0 missing
Eta_Bnumeric77 unique values
0 missing
SsssNnumeric36 unique values
0 missing
CATS2D_02_AAnumeric8 unique values
0 missing
CATS2D_05_AAnumeric11 unique values
0 missing
Eig07_AEA.dm.numeric89 unique values
0 missing
GATS1pnumeric99 unique values
0 missing
Eig03_AEA.ri.numeric105 unique values
0 missing
PW3numeric53 unique values
0 missing
SpMax2_Bh.m.numeric94 unique values
0 missing
Eig03_EAnumeric92 unique values
0 missing
SM11_AEA.bo.numeric92 unique values
0 missing
SM03_EAnumeric20 unique values
0 missing
SpMin6_Bh.p.numeric87 unique values
0 missing
Eig04_AEA.ed.numeric89 unique values
0 missing
Eig03_AEA.dm.numeric96 unique values
0 missing
AACnumeric95 unique values
0 missing
AECCnumeric101 unique values
0 missing
ALOGPnumeric113 unique values
0 missing
ALOGP2numeric114 unique values
0 missing
AMRnumeric114 unique values
0 missing
AMWnumeric104 unique values
0 missing
ARRnumeric56 unique values
0 missing
ATS1enumeric101 unique values
0 missing
ATS1inumeric101 unique values
0 missing
ATS1mnumeric103 unique values
0 missing
ATS1pnumeric102 unique values
0 missing
ATS1snumeric110 unique values
0 missing
ATS1vnumeric103 unique values
0 missing
ATS2enumeric105 unique values
0 missing
ATS2inumeric100 unique values
0 missing
ATS2mnumeric108 unique values
0 missing

62 properties

149
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
16.94
Maximum kurtosis among attributes of the numeric type.
-0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
2.76
Third quartile of kurtosis among attributes of the numeric type.
149.96
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.94
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.86
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
0.62
Third quartile of skewness among attributes of the numeric type.
4.33
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.63
Third quartile of standard deviation of attributes of the numeric type.
139.62
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.55
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.04
First quartile of means among attributes of the numeric type.
1.25
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
14.61
Mean of means among attributes of the numeric type.
-0.88
First quartile of skewness among attributes of the numeric type.
0.26
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.37
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.45
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.35
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.03
Mean skewness among attributes of the numeric type.
3.54
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
8.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.1
Second quartile (Median) of skewness among attributes of the numeric type.
0.8
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.84
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task