Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1899

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1899

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1899 (TID: 144), and it has 477 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric315 unique values
0 missing
molecule_id (row identifier)nominal477 unique values
0 missing
DBInumeric56 unique values
0 missing
ATSC7enumeric323 unique values
0 missing
SaaNnumeric219 unique values
0 missing
MCDnumeric134 unique values
0 missing
Eig01_EA.dm.numeric68 unique values
0 missing
SpMax_EA.dm.numeric68 unique values
0 missing
P_VSA_LogP_6numeric62 unique values
0 missing
ATSC2snumeric435 unique values
0 missing
ATSC7snumeric446 unique values
0 missing
SM04_EA.dm.numeric159 unique values
0 missing
Eta_sh_xnumeric33 unique values
0 missing
N.075numeric4 unique values
0 missing
NaaNnumeric4 unique values
0 missing
CATS2D_01_APnumeric2 unique values
0 missing
nN.Nnumeric2 unique values
0 missing
nRSRnumeric2 unique values
0 missing
NssSnumeric2 unique values
0 missing
SssSnumeric50 unique values
0 missing
N.071numeric3 unique values
0 missing
nArNR2numeric3 unique values
0 missing
SsNH2numeric88 unique values
0 missing
P_VSA_e_3numeric87 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
nR09numeric7 unique values
0 missing
C.028numeric4 unique values
0 missing
SpDiam_EA.dm.numeric75 unique values
0 missing
SpMAD_EA.dm.numeric188 unique values
0 missing
P_VSA_e_5numeric54 unique values
0 missing
MATS7snumeric305 unique values
0 missing
P_VSA_m_3numeric68 unique values
0 missing
ATSC6snumeric448 unique values
0 missing
NaaaCnumeric5 unique values
0 missing
P_VSA_i_1numeric8 unique values
0 missing
Eta_sh_ynumeric183 unique values
0 missing
MATS7pnumeric284 unique values
0 missing
MATS7inumeric268 unique values
0 missing
Eig14_AEA.ri.numeric321 unique values
0 missing
RBFnumeric120 unique values
0 missing
SM07_EA.dm.numeric72 unique values
0 missing
N.numeric102 unique values
0 missing
SM06_EA.dm.numeric157 unique values
0 missing
SM08_EA.dm.numeric150 unique values
0 missing
Eig02_EA.ri.numeric273 unique values
0 missing
SM10_EA.dm.numeric137 unique values
0 missing
SM12_EA.dm.numeric122 unique values
0 missing
SdssCnumeric269 unique values
0 missing
X3Anumeric64 unique values
0 missing
Eig14_EA.ri.numeric333 unique values
0 missing
SdsNnumeric71 unique values
0 missing
GATS3mnumeric239 unique values
0 missing
nCIRnumeric21 unique values
0 missing
TIEnumeric448 unique values
0 missing
SM09_EA.dm.numeric71 unique values
0 missing
nCrqnumeric3 unique values
0 missing
SM13_EA.dm.numeric69 unique values
0 missing
SM15_EA.dm.numeric68 unique values
0 missing
GATS6pnumeric313 unique values
0 missing
SM11_EA.ri.numeric393 unique values
0 missing
SM12_EA.ri.numeric398 unique values
0 missing
SM13_EA.ri.numeric394 unique values
0 missing
SM14_EA.ri.numeric399 unique values
0 missing
SM15_EA.ri.numeric402 unique values
0 missing
GATS2mnumeric253 unique values
0 missing
Eig13_EA.ed.numeric279 unique values
0 missing
SM08_AEA.ri.numeric279 unique values
0 missing
SpMaxA_EA.dm.numeric85 unique values
0 missing
SM14_EA.dm.numeric116 unique values
0 missing

62 properties

477
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
29.2
Maximum kurtosis among attributes of the numeric type.
-0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
3.64
Third quartile of kurtosis among attributes of the numeric type.
46.64
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.22
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-0.85
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
1.71
Third quartile of skewness among attributes of the numeric type.
5.46
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.96
Third quartile of standard deviation of attributes of the numeric type.
72.47
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.18
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.25
First quartile of means among attributes of the numeric type.
2.9
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.79
Mean of means among attributes of the numeric type.
0.51
First quartile of skewness among attributes of the numeric type.
-0.07
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.3
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.14
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.51
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.27
Mean skewness among attributes of the numeric type.
1.23
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
5.42
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.07
Second quartile (Median) of skewness among attributes of the numeric type.
0.95
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.98
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task