Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4430

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4430

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4430 (TID: 12971), and it has 188 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric130 unique values
0 missing
molecule_id (row identifier)nominal188 unique values
0 missing
Eig09_AEA.bo.numeric74 unique values
0 missing
SpMin6_Bh.i.numeric134 unique values
0 missing
SpMin6_Bh.v.numeric120 unique values
0 missing
Eig10_AEA.bo.numeric67 unique values
0 missing
Eig11_EA.bo.numeric79 unique values
0 missing
SpMin4_Bh.m.numeric114 unique values
0 missing
ATSC7vnumeric159 unique values
0 missing
Eig11_AEA.bo.numeric79 unique values
0 missing
Eig11_EA.ed.numeric68 unique values
0 missing
SM06_AEA.ri.numeric68 unique values
0 missing
Eig11_AEA.ri.numeric127 unique values
0 missing
Eig11_EA.ri.numeric116 unique values
0 missing
SpMin7_Bh.m.numeric102 unique values
0 missing
IDEnumeric90 unique values
0 missing
MSDnumeric94 unique values
0 missing
SpMax4_Bh.i.numeric128 unique values
0 missing
SpMin5_Bh.p.numeric111 unique values
0 missing
SpMin5_Bh.v.numeric112 unique values
0 missing
Eig08_EA.bo.numeric84 unique values
0 missing
AECCnumeric86 unique values
0 missing
SpMax4_Bh.e.numeric134 unique values
0 missing
RDCHInumeric94 unique values
0 missing
Eig08_AEA.bo.numeric80 unique values
0 missing
Eig15_AEA.bo.numeric83 unique values
0 missing
piPC03numeric91 unique values
0 missing
D.Dtr05numeric80 unique values
0 missing
nCnumeric17 unique values
0 missing
IACnumeric100 unique values
0 missing
TIC0numeric100 unique values
0 missing
piPC01numeric42 unique values
0 missing
SCBOnumeric42 unique values
0 missing
piPC04numeric101 unique values
0 missing
piPC06numeric110 unique values
0 missing
Eig09_EA.bo.numeric80 unique values
0 missing
Eig03_EA.bo.numeric101 unique values
0 missing
SM13_AEA.ri.numeric101 unique values
0 missing
DECCnumeric86 unique values
0 missing
Chi1_EA.ed.numeric97 unique values
0 missing
SpMin4_Bh.p.numeric116 unique values
0 missing
piPC07numeric109 unique values
0 missing
HVcpxnumeric89 unique values
0 missing
SpMin4_Bh.v.numeric119 unique values
0 missing
Chi0_EA.ed.numeric97 unique values
0 missing
SpMin8_Bh.i.numeric91 unique values
0 missing
SpMin8_Bh.p.numeric110 unique values
0 missing
SpMin8_Bh.v.numeric121 unique values
0 missing
piPC02numeric64 unique values
0 missing
SM02_EA.bo.numeric64 unique values
0 missing
SpAD_EA.bo.numeric112 unique values
0 missing
SpMax5_Bh.p.numeric116 unique values
0 missing
SpMax5_Bh.v.numeric118 unique values
0 missing
SpMin8_Bh.e.numeric94 unique values
0 missing
Eig12_AEA.ed.numeric67 unique values
0 missing
Eig13_AEA.ed.numeric75 unique values
0 missing
GGI9numeric58 unique values
0 missing
UNIPnumeric64 unique values
0 missing
Eig08_EAnumeric76 unique values
0 missing
SM02_AEA.dm.numeric76 unique values
0 missing
Eig14_AEA.bo.numeric84 unique values
0 missing
SpMax5_Bh.i.numeric112 unique values
0 missing
ECCnumeric77 unique values
0 missing
Eig08_AEA.ri.numeric123 unique values
0 missing
Eig08_EA.ri.numeric120 unique values
0 missing

62 properties

188
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
2.1
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.66
Third quartile of kurtosis among attributes of the numeric type.
199.31
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.93
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.59
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
-0.28
Third quartile of skewness among attributes of the numeric type.
0.74
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.86
Third quartile of standard deviation of attributes of the numeric type.
70.36
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.51
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.01
First quartile of means among attributes of the numeric type.
0.07
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.74
Mean of means among attributes of the numeric type.
-0.97
First quartile of skewness among attributes of the numeric type.
0.13
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.27
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.35
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.59
Mean skewness among attributes of the numeric type.
2.41
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.39
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.68
Second quartile (Median) of skewness among attributes of the numeric type.
0.59
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.38
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task