Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5650

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5650

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5650 (TID: 101269), and it has 675 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric41 unique values
0 missing
molecule_id (row identifier)nominal675 unique values
0 missing
GATS5pnumeric373 unique values
0 missing
GATS4pnumeric368 unique values
0 missing
MATS4pnumeric333 unique values
0 missing
GATS4vnumeric342 unique values
0 missing
SaaNnumeric542 unique values
0 missing
MATS4vnumeric342 unique values
0 missing
AACnumeric372 unique values
0 missing
AECCnumeric505 unique values
0 missing
ALOGPnumeric604 unique values
0 missing
ALOGP2numeric644 unique values
0 missing
AMRnumeric646 unique values
0 missing
AMWnumeric528 unique values
0 missing
ARRnumeric181 unique values
0 missing
ATS1enumeric452 unique values
0 missing
ATS1inumeric456 unique values
0 missing
ATS1mnumeric443 unique values
0 missing
ATS1pnumeric435 unique values
0 missing
ATS1snumeric461 unique values
0 missing
ATS1vnumeric440 unique values
0 missing
ATS2enumeric478 unique values
0 missing
ATS2inumeric473 unique values
0 missing
ATS2mnumeric464 unique values
0 missing
ATS2pnumeric458 unique values
0 missing
ATS2snumeric505 unique values
0 missing
ATS2vnumeric449 unique values
0 missing
ATS3enumeric479 unique values
0 missing
ATS3inumeric490 unique values
0 missing
ATS3mnumeric473 unique values
0 missing
ATS3pnumeric470 unique values
0 missing
ATS3snumeric491 unique values
0 missing
ATS3vnumeric472 unique values
0 missing
ATS4enumeric519 unique values
0 missing
ATS4inumeric506 unique values
0 missing
ATS4mnumeric507 unique values
0 missing
ATS4pnumeric513 unique values
0 missing
ATS4snumeric505 unique values
0 missing
ATS4vnumeric497 unique values
0 missing
ATS5enumeric515 unique values
0 missing
ATS5inumeric520 unique values
0 missing
ATS5mnumeric515 unique values
0 missing
ATS5pnumeric514 unique values
0 missing
ATS5snumeric522 unique values
0 missing
ATS5vnumeric521 unique values
0 missing
ATS6enumeric532 unique values
0 missing
ATS6inumeric537 unique values
0 missing
ATS6mnumeric512 unique values
0 missing
ATS6pnumeric521 unique values
0 missing
ATS6snumeric524 unique values
0 missing
ATS6vnumeric530 unique values
0 missing
ATS7enumeric541 unique values
0 missing
ATS7inumeric555 unique values
0 missing
ATS7mnumeric541 unique values
0 missing
ATS7pnumeric549 unique values
0 missing
ATS7snumeric544 unique values
0 missing
ATS7vnumeric542 unique values
0 missing
ATS8enumeric561 unique values
0 missing
ATS8inumeric571 unique values
0 missing
ATS8mnumeric542 unique values
0 missing
ATS8pnumeric562 unique values
0 missing
ATS8snumeric547 unique values
0 missing
ATS8vnumeric548 unique values
0 missing
ATSC1enumeric212 unique values
0 missing
ATSC1inumeric417 unique values
0 missing
ATSC1mnumeric619 unique values
0 missing
ATSC1pnumeric593 unique values
0 missing
ATSC1snumeric641 unique values
0 missing
ATSC1vnumeric599 unique values
0 missing
ATSC2enumeric390 unique values
0 missing
ATSC2inumeric500 unique values
0 missing

62 properties

675
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
20.65
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
5.85
Third quartile of kurtosis among attributes of the numeric type.
105.24
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.84
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.95
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
0.21
Third quartile of skewness among attributes of the numeric type.
3.38
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.52
Third quartile of standard deviation of attributes of the numeric type.
23.04
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.24
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.58
First quartile of means among attributes of the numeric type.
3.16
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.7
Mean of means among attributes of the numeric type.
-1.04
First quartile of skewness among attributes of the numeric type.
0.6
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.11
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.66
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.35
Mean skewness among attributes of the numeric type.
3.97
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.12
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.34
Second quartile (Median) of skewness among attributes of the numeric type.
0.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.31
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task