Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1841

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1841

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1841 (TID: 11755), and it has 1089 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric216 unique values
0 missing
molecule_id (row identifier)nominal1089 unique values
0 missing
CATS2D_08_DPnumeric6 unique values
0 missing
Eig08_EA.ed.numeric809 unique values
0 missing
SM03_AEA.ri.numeric809 unique values
0 missing
X5solnumeric905 unique values
0 missing
SM04_EA.bo.numeric627 unique values
0 missing
Eig08_EA.ri.numeric683 unique values
0 missing
Eig08_AEA.ri.numeric696 unique values
0 missing
D.Dtr09numeric565 unique values
0 missing
X1solnumeric840 unique values
0 missing
ATS1mnumeric624 unique values
0 missing
Eig08_EAnumeric629 unique values
0 missing
SM02_AEA.dm.numeric629 unique values
0 missing
X2solnumeric917 unique values
0 missing
Eig07_EA.bo.numeric657 unique values
0 missing
X3solnumeric921 unique values
0 missing
Eig07_EA.ed.numeric831 unique values
0 missing
SM02_AEA.ri.numeric831 unique values
0 missing
AECCnumeric780 unique values
0 missing
Eig09_EA.ed.numeric794 unique values
0 missing
SM04_AEA.ri.numeric794 unique values
0 missing
Eig09_AEA.ed.numeric685 unique values
0 missing
HVcpxnumeric696 unique values
0 missing
ICRnumeric563 unique values
0 missing
XMODnumeric1026 unique values
0 missing
Eig08_AEA.ed.numeric704 unique values
0 missing
SM06_EA.bo.numeric658 unique values
0 missing
IDEnumeric713 unique values
0 missing
ATS2mnumeric653 unique values
0 missing
X4solnumeric926 unique values
0 missing
GMTIVnumeric1058 unique values
0 missing
UNIPnumeric242 unique values
0 missing
Eig09_AEA.dm.numeric685 unique values
0 missing
MSDnumeric904 unique values
0 missing
X4vnumeric942 unique values
0 missing
X0solnumeric615 unique values
0 missing
Eig01_EA.bo.numeric486 unique values
0 missing
SM11_AEA.ri.numeric486 unique values
0 missing
SpDiam_EA.bo.numeric486 unique values
0 missing
SpMax_EA.bo.numeric486 unique values
0 missing
SpMax6_Bh.m.numeric622 unique values
0 missing
Eig09_EA.bo.numeric698 unique values
0 missing
Eta_betaPnumeric64 unique values
0 missing
Eig08_AEA.dm.numeric687 unique values
0 missing
SpMax3_Bh.m.numeric457 unique values
0 missing
Eig07_AEA.ed.numeric723 unique values
0 missing
P_VSA_e_3numeric349 unique values
0 missing
X1vnumeric991 unique values
0 missing
P_VSA_m_2numeric1009 unique values
0 missing
DECCnumeric718 unique values
0 missing
SpMin1_Bh.p.numeric199 unique values
0 missing
SpMax4_Bh.m.numeric569 unique values
0 missing
SpMin1_Bh.v.numeric203 unique values
0 missing
Chi0_EA.dm.numeric931 unique values
0 missing
Eta_alphanumeric648 unique values
0 missing
X3vnumeric975 unique values
0 missing
ATS4mnumeric727 unique values
0 missing
X1numeric765 unique values
0 missing
Eig10_EAnumeric640 unique values
0 missing
SM04_AEA.dm.numeric640 unique values
0 missing
Eig09_EAnumeric632 unique values
0 missing
SM03_AEA.dm.numeric632 unique values
0 missing
CATS2D_02_DLnumeric16 unique values
0 missing
X4numeric938 unique values
0 missing
SM08_EA.bo.numeric700 unique values
0 missing
Eig09_AEA.ri.numeric688 unique values
0 missing
piPC10numeric806 unique values
0 missing
Eig06_EA.bo.numeric655 unique values
0 missing
Hynumeric514 unique values
0 missing
SM10_EA.bo.numeric770 unique values
0 missing
SpMin7_Bh.e.numeric528 unique values
0 missing

62 properties

1089
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
6.32
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.07
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.01
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.25
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
1036.46
Mean standard deviation of attributes of the numeric type.
-0.76
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.71
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.03
Minimum kurtosis among attributes of the numeric type.
0.18
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
396.18
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
14.73
Third quartile of kurtosis among attributes of the numeric type.
39302.08
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
9.81
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-3.29
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.35
Third quartile of skewness among attributes of the numeric type.
17.87
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.69
First quartile of kurtosis among attributes of the numeric type.
2.81
Third quartile of standard deviation of attributes of the numeric type.
73215.04
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
2.16
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
17.16
Mean kurtosis among attributes of the numeric type.
-1.35
First quartile of skewness among attributes of the numeric type.
566.65
Mean of means among attributes of the numeric type.
0.42
First quartile of standard deviation of attributes of the numeric type.
0.18
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task