Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1804

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1804

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1804 (TID: 117), and it has 818 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric387 unique values
0 missing
molecule_id (row identifier)nominal818 unique values
0 missing
CATS2D_08_APnumeric7 unique values
0 missing
CATS2D_07_APnumeric5 unique values
0 missing
MATS7vnumeric177 unique values
0 missing
CATS2D_02_PLnumeric7 unique values
0 missing
SpMin8_Bh.i.numeric297 unique values
0 missing
nRNHRnumeric4 unique values
0 missing
GGI6numeric442 unique values
0 missing
GGI5numeric386 unique values
0 missing
N.067numeric4 unique values
0 missing
CATS2D_07_ALnumeric42 unique values
0 missing
JGI7numeric12 unique values
0 missing
CATS2D_08_ALnumeric35 unique values
0 missing
DLS_06numeric6 unique values
0 missing
ATS7enumeric496 unique values
0 missing
TRSnumeric61 unique values
0 missing
DLS_07numeric3 unique values
0 missing
P_VSA_LogP_7numeric155 unique values
0 missing
ATS5enumeric470 unique values
0 missing
ATSC7vnumeric639 unique values
0 missing
ATS4inumeric494 unique values
0 missing
ATS5inumeric473 unique values
0 missing
CATS2D_09_ALnumeric41 unique values
0 missing
H.046numeric18 unique values
0 missing
P_VSA_e_1numeric80 unique values
0 missing
P_VSA_m_1numeric80 unique values
0 missing
P_VSA_s_2numeric107 unique values
0 missing
P_VSA_v_1numeric80 unique values
0 missing
SpMin6_Bh.s.numeric239 unique values
0 missing
LLS_01numeric4 unique values
0 missing
cRo5numeric2 unique values
0 missing
MAXDPnumeric582 unique values
0 missing
P_VSA_LogP_2numeric272 unique values
0 missing
SdOnumeric538 unique values
0 missing
Eig06_EA.ri.numeric335 unique values
0 missing
Eig07_EA.dm.numeric93 unique values
0 missing
Eig05_EA.bo.numeric276 unique values
0 missing
SM15_AEA.ri.numeric276 unique values
0 missing
SpMin8_Bh.m.numeric299 unique values
0 missing
SpMax7_Bh.i.numeric262 unique values
0 missing
NssSnumeric4 unique values
0 missing
SIC1numeric179 unique values
0 missing
SpMin8_Bh.e.numeric297 unique values
0 missing
SpMax5_Bh.v.numeric279 unique values
0 missing
H.053numeric4 unique values
0 missing
NaaOnumeric2 unique values
0 missing
SaaOnumeric47 unique values
0 missing
SpMin8_Bh.v.numeric294 unique values
0 missing
ATSC8snumeric656 unique values
0 missing
GGI7numeric466 unique values
0 missing
C.028numeric4 unique values
0 missing
SpMin8_Bh.p.numeric302 unique values
0 missing
Eig08_EA.dm.numeric93 unique values
0 missing
SpMin5_Bh.m.numeric194 unique values
0 missing
CMC.80numeric2 unique values
0 missing
CATS2D_03_DAnumeric21 unique values
0 missing
nSnumeric4 unique values
0 missing
SpMax6_Bh.m.numeric282 unique values
0 missing
S.107numeric4 unique values
0 missing
X4solnumeric546 unique values
0 missing
nRSSRnumeric2 unique values
0 missing
ATS5snumeric488 unique values
0 missing
H.047numeric57 unique values
0 missing
O.058numeric19 unique values
0 missing
ATS3pnumeric480 unique values
0 missing
SpMax5_Bh.e.numeric277 unique values
0 missing
SpMin5_Bh.v.numeric225 unique values
0 missing
Eig13_AEA.bo.numeric326 unique values
0 missing

62 properties

818
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
11.28
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
1.61
Third quartile of kurtosis among attributes of the numeric type.
635.4
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.98
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.16
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
0.71
Third quartile of skewness among attributes of the numeric type.
3.64
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.29
Third quartile of standard deviation of attributes of the numeric type.
393.11
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.63
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.08
First quartile of means among attributes of the numeric type.
1.31
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
62.32
Mean of means among attributes of the numeric type.
-0.91
First quartile of skewness among attributes of the numeric type.
0.01
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.08
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.04
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.11
Mean skewness among attributes of the numeric type.
2.73
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
27.9
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.06
Second quartile (Median) of skewness among attributes of the numeric type.
0.68
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.85
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task