Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3983

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3983

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3983 (TID: 30011), and it has 154 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric77 unique values
0 missing
molecule_id (row identifier)nominal154 unique values
0 missing
SpMin1_Bh.s.numeric89 unique values
0 missing
nCrsnumeric12 unique values
0 missing
C.002numeric11 unique values
0 missing
nCsnumeric12 unique values
0 missing
CATS2D_03_DAnumeric6 unique values
0 missing
C.042numeric2 unique values
0 missing
CATS2D_07_DLnumeric11 unique values
0 missing
Eta_betaS_Anumeric77 unique values
0 missing
C.031numeric2 unique values
0 missing
GATS1vnumeric122 unique values
0 missing
GATS2vnumeric129 unique values
0 missing
CATS2D_02_DAnumeric7 unique values
0 missing
NssCH2numeric16 unique values
0 missing
SpMin2_Bh.s.numeric107 unique values
0 missing
SpMin2_Bh.v.numeric93 unique values
0 missing
SssCH2numeric131 unique values
0 missing
nArNHRnumeric3 unique values
0 missing
C.025numeric9 unique values
0 missing
MATS1inumeric130 unique values
0 missing
Chi1_EA.dm.numeric148 unique values
0 missing
nCsp3numeric20 unique values
0 missing
Mvnumeric88 unique values
0 missing
Mpnumeric79 unique values
0 missing
GATS1inumeric134 unique values
0 missing
N.070numeric3 unique values
0 missing
CIC5numeric129 unique values
0 missing
SIC5numeric84 unique values
0 missing
SpMin7_Bh.s.numeric90 unique values
0 missing
AMWnumeric133 unique values
0 missing
H.numeric89 unique values
0 missing
N.071numeric3 unique values
0 missing
GATS1mnumeric120 unique values
0 missing
nArNR2numeric3 unique values
0 missing
SpMin2_Bh.p.numeric84 unique values
0 missing
SpMin6_Bh.s.numeric97 unique values
0 missing
P_VSA_e_3numeric86 unique values
0 missing
ATS3inumeric142 unique values
0 missing
GATS2mnumeric126 unique values
0 missing
nNnumeric10 unique values
0 missing
CATS2D_03_DDnumeric3 unique values
0 missing
Eig01_EA.ri.numeric101 unique values
0 missing
SpDiam_EA.ri.numeric100 unique values
0 missing
SpMax_EA.ri.numeric101 unique values
0 missing
SsssCHnumeric75 unique values
0 missing
C.numeric95 unique values
0 missing
CIC4numeric127 unique values
0 missing
nImidazolesnumeric3 unique values
0 missing
SIC4numeric87 unique values
0 missing
GATS2pnumeric121 unique values
0 missing
H.046numeric11 unique values
0 missing
Eta_betaP_Anumeric105 unique values
0 missing
CATS2D_06_DLnumeric12 unique values
0 missing
ATSC3vnumeric150 unique values
0 missing
PCRnumeric111 unique values
0 missing
CATS2D_07_LLnumeric19 unique values
0 missing
SpMin1_Bh.m.numeric82 unique values
0 missing
C.032numeric2 unique values
0 missing
H.052numeric15 unique values
0 missing
Eta_L_Anumeric88 unique values
0 missing
CATS2D_06_LLnumeric19 unique values
0 missing
Eta_FL_Anumeric85 unique values
0 missing
ATSC1mnumeric147 unique values
0 missing
Rperimnumeric22 unique values
0 missing
GATS1pnumeric132 unique values
0 missing
nCsp2numeric20 unique values
0 missing

62 properties

154
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
6.53
Maximum kurtosis among attributes of the numeric type.
-0.17
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.03
Third quartile of kurtosis among attributes of the numeric type.
86.88
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.13
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.13
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
0.83
Third quartile of skewness among attributes of the numeric type.
1.64
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3
Third quartile of standard deviation of attributes of the numeric type.
26.21
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.7
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.64
First quartile of means among attributes of the numeric type.
-0.1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.12
Mean of means among attributes of the numeric type.
-0.17
First quartile of skewness among attributes of the numeric type.
0.22
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.12
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.44
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.51
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.28
Mean skewness among attributes of the numeric type.
1.39
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.08
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.26
Second quartile (Median) of skewness among attributes of the numeric type.
0.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-2.02
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task