Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3060

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3060

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3060 (TID: 11596), and it has 416 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric131 unique values
0 missing
molecule_id (row identifier)nominal416 unique values
0 missing
SdOnumeric376 unique values
0 missing
ICRnumeric201 unique values
0 missing
CATS2D_05_ANnumeric2 unique values
0 missing
CATS2D_01_ANnumeric2 unique values
0 missing
CATS2D_01_DNnumeric2 unique values
0 missing
CATS2D_02_ANnumeric2 unique values
0 missing
CATS2D_07_NLnumeric2 unique values
0 missing
CATS2D_08_NLnumeric4 unique values
0 missing
CATS2D_09_NLnumeric4 unique values
0 missing
nRCOOHnumeric2 unique values
0 missing
HVcpxnumeric234 unique values
0 missing
IDEnumeric232 unique values
0 missing
MSDnumeric277 unique values
0 missing
SM08_AEA.bo.numeric268 unique values
0 missing
SM07_AEA.bo.numeric254 unique values
0 missing
SpDiam_AEA.ri.numeric202 unique values
0 missing
nSnumeric3 unique values
0 missing
Eig01_AEA.dm.numeric80 unique values
0 missing
SpMax_AEA.dm.numeric80 unique values
0 missing
Eig01_AEA.ed.numeric113 unique values
0 missing
SpMax_AEA.ed.numeric113 unique values
0 missing
SpMax1_Bh.p.numeric142 unique values
0 missing
MATS5enumeric247 unique values
0 missing
RDCHInumeric253 unique values
0 missing
NddssSnumeric3 unique values
0 missing
S.110numeric3 unique values
0 missing
SpDiam_AEA.dm.numeric81 unique values
0 missing
Eig01_EA.ed.numeric146 unique values
0 missing
SM10_AEA.dm.numeric146 unique values
0 missing
SpMax_EA.ed.numeric146 unique values
0 missing
MATS6mnumeric217 unique values
0 missing
SpMax3_Bh.v.numeric183 unique values
0 missing
Eig02_EA.ed.numeric171 unique values
0 missing
SM11_AEA.dm.numeric171 unique values
0 missing
SM06_AEA.bo.numeric243 unique values
0 missing
SpDiam_EA.ed.numeric197 unique values
0 missing
CATS2D_06_ALnumeric15 unique values
0 missing
SM14_EA.dm.numeric59 unique values
0 missing
piPC09numeric284 unique values
0 missing
piPC10numeric285 unique values
0 missing
Eig01_AEA.bo.numeric137 unique values
0 missing
SpMax_AEA.bo.numeric137 unique values
0 missing
SM08_EA.dm.numeric90 unique values
0 missing
SM10_EA.dm.numeric73 unique values
0 missing
SM12_EA.dm.numeric66 unique values
0 missing
SpMin3_Bh.m.numeric159 unique values
0 missing
SpDiam_AEA.bo.numeric152 unique values
0 missing
Chi1_EA.ed.numeric270 unique values
0 missing
SM06_EA.dm.numeric107 unique values
0 missing
nS..O.2numeric3 unique values
0 missing
nNnumeric6 unique values
0 missing
P_VSA_e_3numeric48 unique values
0 missing
Eig01_EAnumeric148 unique values
0 missing
SM09_AEA.bo.numeric148 unique values
0 missing
SpDiam_EAnumeric148 unique values
0 missing
SpMax_EAnumeric148 unique values
0 missing
GATS6enumeric305 unique values
0 missing
SpMin3_Bh.i.numeric165 unique values
0 missing
SM15_EA.dm.numeric35 unique values
0 missing
Eig02_EAnumeric173 unique values
0 missing
SM10_AEA.bo.numeric173 unique values
0 missing
SM07_EA.dm.numeric47 unique values
0 missing
SM09_EA.dm.numeric41 unique values
0 missing

62 properties

416
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
11.15
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.54
Third quartile of kurtosis among attributes of the numeric type.
25.97
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.15
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-0.52
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
0.56
Third quartile of skewness among attributes of the numeric type.
3.46
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.86
Third quartile of standard deviation of attributes of the numeric type.
13.8
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.27
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.77
First quartile of means among attributes of the numeric type.
0.29
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.58
Mean of means among attributes of the numeric type.
-0.01
First quartile of skewness among attributes of the numeric type.
0.65
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.16
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.9
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.56
Mean skewness among attributes of the numeric type.
4.41
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.48
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.2
Second quartile (Median) of skewness among attributes of the numeric type.
0.49
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.52
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task